精英家教网 > 初中数学 > 题目详情

已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)如图2,当折叠后的数学公式经过圆心O时,求数学公式的长;
(2)如图3,当弦AB=2时,求折叠后数学公式所在圆的圆心O′到弦AB的距离;
(3)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的数学公式数学公式所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的数学公式数学公式所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.

解:(1)如图2,过点O作OE⊥AB交⊙O于点E,连接OA、OB、AE、BE
∵点E与点O关于AB对称
∴△OAE、△OBE为等边三角形;
∴∠OEA=∠OEB=60°
==

(2)如图3,连接O′A、O′B,
折叠前后所在的⊙O与⊙O是等圆,
∴O′A=O′B=OA=AB=2
∴△AO′B为等边三角形;
过点O′作O′E⊥AB于点E
∴O′E=O′B•sin60°=

(3)①如图4,所在圆外切于点P时,
过点O作EF⊥AB交于点E,交于点F,
∵AB∥CD,
∴EF垂直平分CD、且必过点P,
根据垂径定理及折叠,可知
又∵EF=4,
∴点O到AB、CD的距离之和为:
d=PH+PG=
②如图5,当AB与CD不平行时,
四边形OMPN是平行四边形
证明如下:
设O′、O″为所在圆的圆心,
由折叠可知:O′与O关于AB对称,O″与O关于CD对称,
∴M为OO′的中点,N为OO″的中点;…9分
所在圆外切,
∴连心线O′O″必过点P,
所在圆与⊙O都是等圆,
∴O′P=O″P=2;

∴四边形OMPN是平行四边形.
分析:(1)如图2,过点O作OE⊥AB交⊙O于点E,连接OA、OB、AE、BE,可得△OAE、△OBE为等边三角形,从而得到的圆心角,再根据弧长公式计算即可;
(2)如图3,连接O′A、O′B,过点O′作O′E⊥AB于点E,可得△AO′B为等边三角形,根据三角函数的知识可求折叠后所在圆的圆心O到弦AB的距离;
(3)①如图4,所在圆外切于点P时,过点O作EF⊥AB交于点E,交于点F,根据垂径定理及折叠,可求点O到AB、CD的距离之和;
②根据一组对边平行且相等的四边形是平行四边形即可得证.
点评:综合考查了相切两圆的性质,等边三角形的判定与性质,平行四边形的判定,垂径定理,弧长的计算,翻折变换(折叠问题),解直角三角形,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南昌)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)①折叠后的
AB
所在圆的圆心为O′时,求O′A的长度;
     ②如图2,当折叠后的
AB
经过圆心为O时,求
AOB
的长度;
     ③如图3,当弦AB=2时,求圆心O到弦AB的距离;
(2)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的
AB
CD
所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的
AB
CD
所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江西)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)如图2,当折叠后的
AB
经过圆心O时,求
AB
的长;
(2)如图3,当弦AB=2时,求折叠后
AB
所在圆的圆心O′到弦AB的距离;
(3)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的
CD
AB
所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的
CD
AB
所在圆外切于点P时,设点M为AB的中点,点N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江西卷)数学(带解析) 题型:解答题

已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;
②如图2,当折叠后的经过圆心为O时,求的长度;
③如图3,当弦AB=2时,求圆心O到弦AB的距离;
(2)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江西卷)数学(解析版) 题型:解答题

已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.

(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;

     ②如图2,当折叠后的经过圆心为O时,求的长度;

     ③如图3,当弦AB=2时,求圆心O到弦AB的距离;

(2)在图1中,再将纸片⊙O沿弦CD折叠操作.

①如图4,当AB∥CD,折叠后的所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;

②如图5,当AB与CD不平行,折叠后的所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.

 

查看答案和解析>>

科目:初中数学 来源:2012年江西省南昌市中考数学试卷(解析版) 题型:解答题

已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;
     ②如图2,当折叠后的经过圆心为O时,求的长度;
     ③如图3,当弦AB=2时,求圆心O到弦AB的距离;
(2)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的所在圆外切于点P时,设点O到弦AB、CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案