精英家教网 > 初中数学 > 题目详情
15.如图,直线y=$\frac{1}{2}$x+2与双曲线相交于点A(m,3),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

分析 (1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;
(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.

解答 解:(1)把A(m,3)代入直线解析式得:3=$\frac{1}{2}$m+2,即m=2,
∴A(2,3),
把A坐标代入y=$\frac{k}{x}$,得k=6,
则双曲线解析式为y=$\frac{6}{x}$;
(2)对于直线y=$\frac{1}{2}$x+2,令y=0,得到x=-4,即C(-4,0),
设P(x,0),可得PC=|x+4|,
∵△ACP面积为3,
∴$\frac{1}{2}$|x+4|•3=3,即|x+4|=2,
解得:x=-2或x=-6,
则P坐标为(-2,0)或(-6,0).

点评 此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.化简:$\frac{{a}^{2}-4}{{a}^{2}+2a+1}$÷$\frac{{a}^{2}-4a+4}{(a+1)^{2}}$-$\frac{2}{a-2}$的结果为(  )
A.$\frac{a+2}{a-2}$B.$\frac{a-4}{a-2}$C.$\frac{a}{a-2}$D.a

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.二次函数y=-(x-1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如果向右走5步记为+5,那么向左走3步记为(  )
A.+3B.-3C.+$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,菱形ABCD的周长是8cm,AB的长是2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,一个空心圆柱体,其主视图正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
                频数分布表
身高分组频数百分比
x<155510%
155≤x<160a20%
160≤x<1651530%
165≤x<17014b
x≥170612%
总计100%
(1)填空:a=10,b=28%;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知关于x的方程x2+3x+a=0有一个根为-2,则另一个根为(  )
A.5B.-1C.2D.-5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若关于x的方程$\frac{ax}{x-2}$=$\frac{6}{x-2}$+1无解,则a=3或1.

查看答案和解析>>

同步练习册答案