三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )
A. 1个 B. 3个 C. 5个 D. 无数个
C 【解析】根据三角形的三边关系可得5-3<c<5+3,即2<c<8,因c的值为奇数,所以c为3、5、7,即可得由a,b,c为边可组成三角形的个数为3个,故选B.在下列四个交通标志图中,是轴对称图形的是( )
A.
B.
C.
D. ![]()
已知实数
,
满足:
,且
,求
的值.
已知
与
互为相反数,求
的平方根.
阅读下面的信息,回答问题:
在数轴上,我们把到两个点距离相等的点,叫做这两个点的“中点”,例如:
①表示和![]()
的点到表示![]()
的点距离都为![]()
,所以它们“中点”表示的数是![]()
.![]()
②表示和![]()
的点到表示![]()
的点距离都为![]()
,所以它们的“中点”表示的数是![]()
.![]()
![]()
()表示![]()
和![]()
的点的“中点”表示的数是__________.![]()
()若“中点”表示的数是![]()
,其中一个点表示的数是![]()
,求另一个点表示的数.![]()
已知实数
,
,
满足:
,
,
,且
.
(
)在数轴上标出表示
,
的点的大致位置.
(
)化简
.
![]()
科目:初中数学 来源:2017-2018学年北师大版七年级数学下册 期末测评 题型:解答题
某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会.抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1,2,3,…,100共100个数字,抽到末位数是5的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99的可获100元购物券.某顾客购物用了130元,他获得购物券的概率是多少?他获得20元、100元、200元购物券的概率分别是多少?
P(获得购物券)= ,P(获得20元购物券)= ,P(获得100元购物券)= ,P(获得200元购物券)= 【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小. 试题解析:顾客的消费额在100元到200元之间,因此可以获得一次抽奖的机会. 在抽奖箱内,写有66,88,99的牌子各有1个,末位数字是5的牌...在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.
![]()
如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律摆.
![]()
(1)第5个“广”字中的棋子个数是 .
(2)第n个“广”字需要多少枚棋子?
查看答案如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
先化简再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.
查看答案小聪和小明沿同一条路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4 km,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O—A—B—C和线段OD分别表示两人离学校的路程s(km)与所经过的时间t(min)之间的关系,请根据图象回答:下列四个结论
![]()
①小聪在图书馆查阅资料的时间为15 min;
②小聪返回学校的速度为
km/min;
③小明离开学校的路程s(km)与所经过的时间t(min)之间的关系式是s=
t;
④当小聪与小明迎面相遇时,他们离学校的路程是
km.
其中正确结论的序号是_____.
查看答案 试题属性查看答案和解析>>
科目:初中数学 来源:浙江省杭州市下城区安吉路良渚实验2017-2018学年九年级上学期期中考试数学试卷 题型:单选题
如图,已知
的半径
,
,则
所对的弧
的长为( )
![]()
A.
B.
C.
D. ![]()
如图,
,
,
交于
,
,
,
,则
长为( ).
![]()
A.
B.
C.
D. ![]()
将抛物线
先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ).
A.
B.
C.
D. ![]()
若二次函数
的图象经过点
,则
的值为( ).
A.
B.
C.
D. ![]()
若
,则
的值等于( ).
A.
B.
C.
D. ![]()
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
查看答案和解析>>
科目:初中数学 来源:山东省临沂市沂水县2017-2018学年八年级(上)期中数学试卷 题型:单选题
如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
C 【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误; 已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA, 再由∠BCE=∠BDA,∠BCE=∠BCD+∠D...已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:
①如果添加条件“AB=AC”,那么△ABC是等边三角形;
②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;
③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.
上述说法中,正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为( )
![]()
A. 90° B. 95° C. 100° D. 105°
查看答案如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为
![]()
A. 40° B. 36° C. 30° D. 25°
查看答案如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案 试题属性查看答案和解析>>
科目:初中数学 来源:山东省临沂市沂水县2017-2018学年八年级(上)期中数学试卷 题型:单选题
下列条件中,不能判定两个直角三角形全等的是( )
A. 两直角边对应相等 B. 斜边和一条直角边对应相等
C. 两锐角对应相等 D. 一个锐角和斜边对应相等
C 【解析】A选项,由“两直角边对应相等”根据“SAS”可证得两直角三角形全等; B选项,由“斜边和一直角边对应相等”根据“HL”可证得两直角三角形全等; C选项,由“两锐角对应相等”不能证得两直角三角形全等,因为证两三角形全等,至少需要一条边对应相等; D选项,由“一个锐角和斜边对应相等”根据“AAS”可证得两直角三角形全等; 故选C.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( )
A. 7 B. 8 C. 9 D. 10
查看答案一副三角板如图叠放在一起,则图中∠α的度数为( )
![]()
A. 35° B. 30° C. 25° D. 15°
查看答案如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要( )
![]()
A. AB=CD B. EC=BF C. ∠A=∠D D. AB=BC
查看答案如图,已知在△ABC中,∠ABC=70°,∠C=50°,BD是角平分线,则∠BDC的度数为
![]()
A. 95° B. 100° C. 110° D. 120°
查看答案三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )
A. 1个 B. 3个 C. 5个 D. 无数个
查看答案 试题属性查看答案和解析>>
科目:初中数学 来源:北师大版七年级上册 第五章 一元一次方程 5.1 认识一元一次方程 同步测试卷 含答案 题型:填空题
“比x的40%大6的数是13”用方程表示为______________.
40%x+6=13 【解析】因为比x的40%大6的数表示为:40%x+6,所以根据题意可列出方程是: 40%x+6=13,故答案为: 40%x+6=13.查看答案和解析>>
科目:初中数学 来源:北师大版七年级上册 第五章 一元一次方程 5.1 认识一元一次方程 同步测试卷 含答案 题型:单选题
由于禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次降价a%后售价下调到每斤5元,下列所列的方程中正确的是( )
A. 12(1+a%)2=5 B. 12(1-a%)2=5 C. 12(1-2a%)=5 D. 12(1-a2%)=5
B 【解析】因为原来每斤12元,第一次降价a%后价格为:12(1-a%)元,第二次在第一次降价的基础上又降价a%,所以第二次降价后价格为:12(1-a%)(1-a%),即为,所以可列方程为: ,故选B.查看答案和解析>>
科目:初中数学 来源:北师大版七年级上册 第三章 整式及其加减 3.3 整式 同步测试卷 含答案 题型:单选题
(3m-2)x2yn+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是( )
A. 1,4 B. 1,2 C. 0,5 D. 1,1
B 【解析】由题意得: ,解得. 故选:B.查看答案和解析>>
科目:初中数学 来源:人教版数学七年级下册(贵州专版) 期中综合检测 题型:单选题
如图所示,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于 ( )
![]()
A. 70° B. 80° C. 90° D. 100°
B 【解析】∵∠CEA=100°, ∴∠CEB=180°?∠CEA=80°; 又∵AB∥DF, ∴∠CEB=∠D=80°; 故答案为:B.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com