精英家教网 > 初中数学 > 题目详情

数学公式,求(x+y)2-(x-y)2的值.

解:解法1:(x+y)2-(x-y)2
=(x2+2xy+y2)-(x2-2xy+y2
=x2+2xy+y2-x2+2xy-y2
=4xy;
解法2:(x+y)2-(x-y)2
=[(x+y)+(x-y)][(x+y)-(x-y)]
=(x+y+x-y)(x+y-x+y)
=2x•2y
=4xy.
时,原式=4xy=4××(-)=-4.
分析:化简原式的解法有两种,解法1:利用完全平方公式把原式展开,去括号后合并即可得到最简结果;解法2:利用平方差公式将原式分解因式,去括号合并即可得到最简结果,然后将x与y的值,代入化简后的式子中即可求出值.
点评:此题考查了完全平方公式,以及平方差公式,此类题属于化简求值题,需将原式化为最简后,再代值.熟练掌握完全平方公式及平方差公式的结构特点是解本题的关键,完全平方公式为两数和或差的平方等于两数的平方和加上或减去两数之积的2倍;平方差公式为两数的平方差等于两数之和乘以两数之差.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
,消去y化简得:2x2-7x+6=0,
∵△=49-48>0,∴x1=
 
,x2=
 

∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?

查看答案和解析>>

科目:初中数学 来源: 题型:

探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,精英家教网由题意得方程组:
x+y=
7
2
xy=3
,消去y化简得:2x2-7x+6=0,
∵△=49-48>0,∴x1=
 
,x2=
 
.∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?
(4)如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:
①这个图象所研究的矩形A的两边长为
 
 

②满足条件的矩形B的两边长为
 
 

查看答案和解析>>

科目:初中数学 来源: 题型:

20、探索这样一个问题:“任意给定一个矩形A,是否存在矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边长为x,则另一边长为(3.5-x),由题意得方程:x(3.5-x)=3即 x2-3.5x+3=0.∵△=(3.5)2-4×(2)1×(3)3=0.25>0∴x1=
2
x2=
1.5
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小明的方法研究是否存在满足要求的矩形B.

查看答案和解析>>

科目:初中数学 来源: 题型:

“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的三分之一?”(完成下列空格)
(1)当已知矩形A的边长分别3和1时,小明是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
4
3
xy=1

消去y化简得:3x2-4x+3=0
∵b2-4ac=16-36=-20<0
∴故方程
 
.∴满足要求的矩形B
 
(填不存在或存在).
若已知矩形A的边长分别为10和1,请仿照小明的方法研究是否存在满足要求的矩形B.若存在,求矩形B的长和宽,若不存在,说明理由.
(2)如果矩形A的边长为a和b,请你研究满足什么条件时,矩形B存在?并求此时矩形B的长.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:
 

(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

查看答案和解析>>

同步练习册答案