精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠BAC=90°,AB=AC,直线MN经过点A,过点B作BD⊥MN于D,过精英家教网C作CE⊥MN于E.
(1)求证:△ABD≌△CAE;
(2)若BD=12cm,DE=20cm,求CE的长度.
分析:(1)由∠BAC=90°,则∠BAD+∠CAD=90°,又BD⊥MN,CE⊥MN,则∠CAD+∠ACE=90°,∠BDA=∠AEC=90°,AAS即可证明△ABD≌△CAE;
(2)由(1)得,BD=AE,AD=CE,由BD=12cm,则AE=12cm,又DE=20cm,则AD=AE+DE=12cm+20cm=32cm,所以,CE=AD=32cm;
解答:(1)证明:∵∠BAC=90°,
∴∠BAD+∠CAD=90°,
又∵BD⊥MN,CE⊥MN,
∴∠CAD+∠ACE=90°,∠BDA=∠AEC=90°,
∴∠BAD=∠ACE,又AB=AC,
在△ABD和△CAE中
∠BDA=∠AEC
∠BAD=∠ACE
AB=AC

∴△ABD≌△CAE(AAS);

(2)解:∵△ABD≌△CAE,
∴BD=AE,AD=CE,
∵BD=12cm,DE=20cm,
∴AE=12cm,AD=AE+DE=12cm+20cm=32cm,
∴CE=32cm.
点评:本题主要考查了全等三角形的判定与性质和等腰三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案