精英家教网 > 初中数学 > 题目详情

如图1,在△ABC和△PQD中,AC = k BCDP = k DQ,∠C =∠PDQDE分别是ABAC的中点,点P在直线BC上,连结EQPC于点H

猜想线段EHAC的数量关系,并证明你的猜想.

21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站 


结论:EH=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC.

证明:取BC边中点F,连接DE、DF

∵D、E、F分别是边AB、AC、BC的中点.

∴DE∥BC且DE=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站BC,

 DF∥AC且DF=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC,

 EC=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC ∴四边形DFCE是平行四边形.

∴∠EDF=∠C. 

∵∠C=∠PDQ,∴∠PDQ =∠EDF , ∴∠PDF=∠QDE.

又∵AC=kBC,∴DF=kDE.

∵DP=kDQ ,∴21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站

∴△PDF∽△QDE.

∴∠DEQ=∠DFP.

又∵DE∥BC,DF∥AC, ∴∠DEQ=∠EHC,∠DFP=∠C.

∴∠C =∠EHC.

∴EH=EC.

∴EH=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC.

选图2.结论:EH=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC.

证明:取BC边中点F,连接DE、DF.

∵D、E、F分别是边AB、AC、BC的中点,

∴DE∥BC且DE=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站BC, DF∥AC且DF=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC,

EC=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC ,∴四边形DFCE是平行四边形.

∴∠EDF=∠C.

∵∠C=∠PDQ,∴∠PDQ=∠EDF , ∴∠PDF=∠QDE.

又∵AC=BC, ∴DE=DF,∵PD=QD,∴△PDF≌△QDE.

∴∠DEQ=∠DFP.

∵DE∥BC,DF∥AC, ∴∠DEQ=∠EHC,∠DFP=∠C.

∴∠C =∠EHC

∴EH=EC.

∴EH=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC.

选图3. 结论: EH=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC.

证明:连接AH.

∵D是AB中点,∴DA=DB.

又∵DB=DQ,∴DQ=DP=AD.∴∠DBQ=∠DQB,.

∵∠DBQ+∠DQB+∠DQA+∠DAQ,=180°,∴∠AQB=90°,

∴AH⊥BC.

又∵E是AC中点,∴HE=21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图1,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=kAC(k>1).试探索线段EF与AB的数量关系,并证明你的结论.
说明:如果你反复探索没有解决问题,可以选取k=1(图2)来证明,此时满分7分.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南)(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.
求证:∠A=∠D.
(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB与CE交于F,ED与AB、BC分别交于M、H.
(1)试说明CF=CH;
(2)如图2,△ABC不动,将△EDC从△ABC的位置绕点C顺时针旋转,当旋转角∠BCD为多少度时,四边形ACDM是平行四边形,请说明理由;
(3)当AC=
2
时,在(2)的条件下,求四边形ACDM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC和△DBE中,AB=AC,DB=DE,∠CAB+∠BDE=180°,∠CAB=α,P为CE的中点,连接AP、DP.若α=120°,探究线段AP、DP的关系.
说明:如果你经过反复探索没有解决问题,可以更改条件将“α=120°”改为“α=90°”,选取图2完成证明得10分.

查看答案和解析>>

同步练习册答案