精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的面积为3,点E是DC边上一点,DE=1,将线段AE绕点A旋转,使点E落在直线BC上,落点记为F,则FC的长为________.

-1或+1
分析:由正方形的 面积为3可知,AD=,而DE=1,在Rt△ADE中,由勾股定理得AE=2,由旋转的性质可知,AF=AE=2,再由勾股定理求BF,得出FC,由于F点在直线BC上,故F点在线段BC上或在线段CB的延长线上.
解答:解:如图,∵正方形ABCD的面积为3,
∴AB=BC=AD=
在Rt△ADE中,由勾股定理得AE==2,
由旋转的性质可知,AF=AE=2,
在Rt△ABF中,由勾股定理,得BF===1,
则FC=BC-BF=-1,
当F点在CB延长线上时,BF′=+1,
故答案为:-1或+1.
点评:本题考查了旋转的性质,勾股定理及正方形的性质.关键是利用勾股定理求线段长,利用旋转的性质得出AE=AF,本题注意F点在直线BC上的条件,分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案