精英家教网 > 初中数学 > 题目详情

如图,矩形沿EF折叠,使点落在边上的B处,沿BG折叠,使落在D处,且BD过F点.

(1)试说明:四边形BEFG是平行四边形;

(2)连结,判断△的形状,并写出理由.

答案:
解析:

  

  分析:(1)BE∥FG已成立,则考虑①BE=FG;②EF∥BG.

  (2)猜想是直角三角形,再寻找判断的理由.


提示:

将特殊四边形的特征与折叠的特征相结合,从题目的折叠条件入手,探索各个线段、角度之间的关系,抓住主要信息,从而解决问题.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的边长AB=6,BC=8,将矩形沿EF折叠,使C点与A点重合,则折痕EF的长是(  )
A、7.5B、6C、10D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).
(1)求图 ②中∠BCB′的大小;
(2)图⑥中的△GCC′是正三角形吗?请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香坊区二模)如图,在矩形ABCD的边AB上有一点E,边AD上有一点F,将此矩形沿EF折叠使点A落在BC边上的点G处,且∠AFE=30°,则∠EGB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

观察与发现:
(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?
精英家教网
实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案