精英家教网 > 初中数学 > 题目详情

若抛物线的顶点在轴的下方,则的取值范围是(  )

A B C D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=x2-(m-1)x+m+2.
(1)若抛物线的顶点在x轴上,求m的值;
(2)若抛物线与x轴相交于点A(x1,0),B(x2,0),且x1•x2=m2-9m+2,求
m+6
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c经过A(-1,0),B(2,-3),C(3,0)三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,E是抛物线上的点,并且满足△AEC的面积是△ADC面积的3倍,求点E的坐标;
(3)设点M是抛物线上,位于x轴的下方,且在对称轴左侧的一个动点,过M作x轴的平行线,交抛物线于另一点N,再作MQ⊥x轴于Q,NP⊥x轴于P.试求矩形MNPQ周长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宿城区一模)如图,已知抛物线y=ax2+bx-4与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
10

(1)求m的值及抛物线的解析式;
(2)点P是线段AB上的一个动点,过点P作PN∥BC,交AC于点N,连接CP,当△PNC的面积最大时,求点P的坐标;
(3)点D(2,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-
1
3
x2+
2
3
mx+n(其中m,n为常数且m>n)与y轴正半轴交于A点,它的对称轴交x轴正半轴于C点,抛物线的顶点为P,Rt△ABC的直角顶点B在对称轴上,当它绕点C按顺时针方向旋转90°得到Rt△A′B′C.
(1)写出点A,P,A′的坐标(用含m,n的式子表示);
(2)若直线BB'交y轴于E点,求证:线段B′E与AA′互相平分;
(3)若点A′在抛物线上且Rt△ABC的面积为1时,请求出抛物线的解析式并判断在抛物线的对称轴上是否存在点D,使△AA′D为等腰三角形?若存在,请直接写出所有符合条件的D点坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案