精英家教网 > 初中数学 > 题目详情

已知二次函数y=x2-2bx+b2+c的图象与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图象上,求a的取值范围.

解:∵二次函数y=x2-2bx+b2+c①的图象与直线y=1-x②只有一个公共点,
∴由①②组成的方程组只有一组解,把②代入①,整理得,x2+(1-2b)x+b2+c-1=0,
∴△=0,即(1-2b)2-4(b2+c-1)=0,得4b+4c=5③,
又∵二次函数y=x2-2bx+b2+c的图象的顶点坐标为(b,c),而顶点在二次函数y=ax2(a≠0)的图象上,
∴c=ab2④,
由③④得,4ab2+4b-5=0,(a≠0)
∴△≥0,即16+4×4a×5≥0,解得a≥-
所以a的取值范围为a≥-,且a≠0.
分析:根据题意y=x2-2bx+b2+c,y=1-x,组成的方程组只有一组解,消去y得到关于x的方程:x2+(1-2b)x+b2+c-1=0,并且△=0,即(1-2b)2-4(b2+c-1)=0,得4b+4c=5;又二次函数y=x2-2bx+b2+c的图象的顶点坐标为(b,c),而顶点在二次函数y=ax2(a≠0)的图象上,得到c=ab2,消去c得到关于b的方程:4ab2+4b-5=0,(a≠0),于是△≥0,即16+4×4a×5≥0,解不等式即可得到a的取值范围.
点评:本题考查了图象交点的情况由它们的解析式组成的方程组的解的情况决定,再转化为由一元二次方程根的判别式来决定.也考查了抛物线顶点坐标的求法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案