精英家教网 > 初中数学 > 题目详情

已知:△ABC是等边三角形,分别过点A,B作AF∥BC,BE∥AC,AF,BE分别与过点C的直线交于点F,E,连接线段BF,AE,BF交AE于点D
(1)求证:△AFC∽△BCE;
(2)△ABC的边长是3,AF=2,求BE的长;
(3)请你找出与△ABF相似的三角形,并证明.

(1)证明:∵AF∥BC,
∴∠AFC=∠BCE,∠CAF=∠ACB,
∵BE∥AC,
∴∠EBC=∠ACB,
∴∠CAF=∠EBC.
在△AFC与△BCE中,∵∠AFC=∠BCE,∠CAF=∠EBC,
∴△AFC∽△BCE;

(2)解:∵△AFC∽△BCE,
∴AF:BC=AC:BE,
∵等边△ABC的边长是3,
∴BC=AC=3,
又AF=2,
∴2:3=3:BE,
∴BE=

(3)解:△BEA∽△ABF,理由如下:
∵△ABC是等边三角形,
∴∠BAC=∠ABC=∠ACB=60°.
∵∠ABE=∠ABC+∠EBC=∠ABC+∠ACB=120°,
∠FAB=∠CAF+∠BAC=∠ACB+∠BAC=120°,
∴∠ABE=∠FAB.
∵△BCE∽△AFC,
=
∵AC=AB=BC,
=
在△BEA与△ABF中,∵=,∠ABE=∠FAB,
∴△BEA∽△ABF.
分析:(1)先由平行线的性质得出∠AFC=∠BCE,∠CAF=∠EBC,再根据两角对应相等,两三角形相似即可证明△AFC∽△BCE;
(2)由△AFC∽△BCE,根据相似三角形对应边成比例及等边三角形的性质即可求出BE的长;
(3)先根据等边三角形及平行线的性质得出∠ABE=∠FAB,再根据△BCE∽△AFC,得出=,则由两边对应成比例且夹角相等,两三角形相似即可证明△BEA∽△ABF.
点评:本题主要考查了平行线的性质,等边三角形的性质,相似三角形的判定与性质,难度中等.其中(3)通过观察△ABF的形状,得出∠ABE=∠FAB=120°,再由△BCE∽△AFC,进而得出=是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某“研究性学习小组”遇到了以下问题,请参与:
已知,△ABC是等边三角形且内接于⊙O,取
AB
上异于A、B的点M.设直线CA与BM相交于点K,直线CB与AM相交于点N.
精英家教网精英家教网精英家教网精英家教网
(1)如图1,图2,图3,M分别为
AB
的中点、三分之一点、四分之一点,△ABC的边长均为2,分别测量出AK、BN的长,计算AK•BN的值(精确到0.01)并将结果填入下表中:
  △ABC的边长  AK•BN的值 
 图1  
 图2  2  
 图3  2  
(2)如图4,当M为
AB
上任意一点时,根据(1)的结果,猜想AK•BN与AB的数量关系式为
 

(3)对(2)中提出的猜想,依图4给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.
(1)利用图1证明:EF=2BC;
(2)在三角板的平移过程中,在图2中线段EB=AH是否始终成立(假定AB,AC与三角板斜边的交点为G、H)?如果成立,请证明;如果不成立,请说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,现给出四个论断:①DB=DE;②CE=CD;③BD是△ABC的中线;④△ABC是等边三角形.请以其中的三个为条件,余下的一个为结论,组成一个正确的命题(只需写出一种),并给予证明.
已知:
△ABC是等边三角形
△ABC是等边三角形
BD是△ABC中线
BD是△ABC中线
CD=CE
CD=CE

求证:
DB=DE
DB=DE

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,△ABC是等边三角形,点D为直线BC上一点(端点B、C除外),以AD为边作等边△ADF,连接CF.
(1)如图1,点D在点C右边,①求证:BD=CF;②求∠FCD的度数;
(2)如图2,点D在点B左边,点F在直线BC下方,请先补全图形,并直接给出∠AFC与∠DAC之间满足的数量关系式为
∠AFC+∠DAC=120°
∠AFC+∠DAC=120°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC是等边三角形,△BDC是等腰三角形,其中∠BDC=120°,过点D作∠EDF=60°,分别交AB于E,交AC于F,连接EF.
(1)若BE=CF,求证:①△DEF是等边三角形;②BE+CF=EF.
(2)若BE≠CF,即E、F分别是线段AB,AC上任意一点,BE+CF=EF还会成立吗?请说明理由.

查看答案和解析>>

同步练习册答案