精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,点E是内心,延长AE交△ABC的外接圆于点D,连接BD、CD、CE,且∠BDA=60°.
(1)求证:△BDE是等边三角形.
(2)若∠BDC=120°,猜想四边形BDCE是怎样的四边形,并证明你的猜想.

(1)证明:∵∠BCA和∠BDA都是弧AB所对的圆周角,
∴∠BCA=∠BDA=60°,
又∵∠BED=∠BAD+∠ABE,
∵AE、BE分别是∠BAC和∠ABC的角平分线,
∴∠BAE+∠ABE=(∠BAC+∠ABC)÷2=(180°-∠BCA)÷2=60°,
∴∠BED=60°,
∴△BDE是等边三角形.

(2)答:四边形BDCE是菱形,
证明:∵∠BDC=120°,
由(1)得∠EDC=60°,
∵∠BED=60°,
同(1)得,可推出∠BEC=120°,
∴△DCE是等边三角形,
∴CE=CD=DE,
由(1)得△BDE是等边三角形,
∴BE=BD=DE,
∴CE=BE=BD=CD,
∴四边形BDCE是菱形.
分析:(1)根据:∵∠BCA和∠BDA都是弧AB所对的圆周角,得到∠BCA=∠BDA=60°,根据三角形的内心,得出∠BAE+∠ABE=60°,推出∠BED=60°,即可推出答案;
(2)四边形BDCE是菱形,理由是:由(1)得∠EDC=60°,推出∠BEC=120°,得到等边△DCE,得出CE=CD=DE,进一步推出CE=BE=BD=CD,即可推出答案.
点评:本题主要考查对菱形的判定,三角形的外接圆与外心,三角形的内切圆与内心,圆周角定理,等边三角形的性质和判定等知识点的理解和掌握,能熟练地运用这些性质进行证明是证此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案