精英家教网 > 初中数学 > 题目详情

如果关于x的一元二次方程x2-2x+m-1=0有两个不相等的实数根,那么x的取值范围是


  1. A.
    m>2
  2. B.
    m<2
  3. C.
    m>2且m≠1
  4. D.
    m<2且m≠1
B
分析:根据“一元二次方程x2-2x+m-1=0有两个不相等的实数根”可得△=b2-4ac>0,再代入a、b、c的值进行计算即可.
解答:由题意得:a=1,b=-2,c=m-1,
△=b2-4ac=(-2)2-4×1×(m-1)=4-4m+4=8-4m>0,
解得:m<2,
故选:B.
点评:此题主要考查了根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

1.⑴ 求出一元二次函数的关系式;

2.⑵点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;

3.⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

【小题1】⑴ 求出一元二次函数的关系式;
【小题2】⑵ 为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
【小题3】⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年山东省东营市学业水平模拟考试数学卷 题型:解答题

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

1.⑴ 求出一元二次函数的关系式;

2.⑵点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;

3.⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.

查看答案和解析>>

同步练习册答案