精英家教网 > 初中数学 > 题目详情

作业宝如图,平面直角坐标系中,已知B(-3,0),C(3,0),点A(0,m)在y
轴正半轴上,P为线段OA上一动点(不与点A、O重合),BP交AC于点E、CP交AB于点F.
(1)求证:BE=CF;
(2)当m=4,BF=2AF时,求点F的坐标;
(3)以线段BE、CF、BC为边构成一个新△BCG(点E与F重合于点G),如果存在点P,恰使S△BCG=S△BCA,求m的取值范围.

(1)证明:∵B(-3,0),C(3,0),
∴OB=OC,
∴y轴是BC的垂直平分线,
又∵点A在y轴正半轴上,点P在线段OA上,
∴AB=AC,PB=PC,
∴∠ABC=∠ACB,∠PBC=∠PCB,
在△BCF和△CBE中,
∴△BCF≌△CBE(ASA),
∴BE=CF;

(2)解:如图,连接OF,
∵m=4,OB=3,
∴S△AOB=×3×4=6,
∵BF=2AF,
∴S△BOF=×6=4,S△AOF=×6=2,
yF•3=4,(-xF)•4=2,
解得yF=,xF=-1,
∴点F的坐标为(-1,);

(3)解:设∠BAC=α,
∵S△BCG=S△BCA,△BCG和△BCA都是等腰三角形,BC是公共边,
∴BE=BA,
∴∠BEA=∠BAE=α,
∴∠ACB=90°-∠OAC=90°-α,
在△ABE中,∠BEA+∠BAE=2α<180°,
∴α<90°,
在△BEC中,∠AEB>∠ACB,
∴α>90°-α,
解得α>60°,
故60°<α<90°,
当α=60°时,△ABC是等边三角形,
∵OC=3,
∴m=AO=OC=3
当α=90°时,△ABC是等腰直角三角形,
m=AO=OC=3,
∴m的取值范围是3<m<3
分析:(1)根据点B、C的坐标判断出y轴是BC的垂直平分线,再根据线段垂直平分线上的点到线段两端点的距离相等可得AB=AC,PB=PC,根据等边对等角可得∠ABC=∠ACB,∠PBC=∠PCB,然后利用“角边角”证明△BCF和△CBE全等,根据全等三角形对应边相等可得BE=CF;
(2)连接OF,先求出△AOB的面积,再根据等高的三角形的面积的比等于底边的比求出△BOF和△AOF的面积,再根据三角形的面积列式求出点F的横坐标与纵坐标的长度,从而得解;
(3)设∠BAC=α,根据三角形的面积求出BE=BA,根据等边对等角可得∠BEA=∠BAE=α,根据等腰三角形三线合一的性质和直角三角形两锐角互余求出∠ACB,再根据三角形的内角和定理求出α<90°,根据三角形的一个外角大于任何一个与它不相邻的内角可得∠AEB>∠ACB,然后求出α>60°,然后分α=60°和90°时求出m的值即可得解.
点评:本题考查了全等三角形的判定与性质,三角形的面积,坐标与图形性质,等腰三角形的判定与性质,(2)从三角形的面积考虑求出点F的横坐标与纵坐标是解题的关键,(3)根据三角形的面积求出BE=BA并求出∠BAC的范围是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案