精英家教网 > 初中数学 > 题目详情

在△ABC中,∠B=90°,D是AC上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,CD=3.求⊙O的半径.

解:连接OD,
∵∠CBA=90°,OB为半径,
∴CB是⊙O切线,
∵AC是⊙O切线,
∴CD=CB=3,
∵AC=2+3=5,
∴在Rt△ACB中,由勾股定理得:AB==4,
设⊙O半径是R,
∵AC是⊙O切线,
∴∠ADO=90°,
∴由勾股定理得:AO2=OD2+AD2
∴(4-R)2=R2+22
R=
即⊙O的半径是
分析:连接OD,根据切线长定理求出BC=CD=3,根据勾股定理求出AB,在Rt△ADO中由勾股定理得出(4-R)2=R2+22,求出方程的解即可.
点评:本题考查了切线长定理,切线的性质,勾股定理的应用,用了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案