精英家教网 > 初中数学 > 题目详情

已知点A(8,0),B(0,6),C(0,-2),连接AB,点P为直线AB上一动点,过点P、C的直线l与AB及y轴围成△PBC,如图.
(1)求直线AB的解析式.
(2)如果PB=PC,求此时点P的坐标.
(3)点P在直线AB上运动,是否存在这样的点P,使得△PBC的面积等于△ABO的面积?若存在,请求出此时直线l的解析式;若不能,请说明理由.

解:(1)设过B(0,6)、A(8,0)的直线为y=kx+b,

解得:
∴过A、B两点的直线为y=-x+6;

(2)作PM垂直BC于M,由PB=PC知
MC=BC=8=4,则OM=2,
设P点坐标为(a,2),代入y=-x+6可求得a=
故P(,2);

(3)设△PBC的面积能等于△ABO的面积,此时点P的坐标为(x,-x+6),
则:S△AOB=24,S△PBC=4x;
∴4x=24,
∴x=6;
即点P坐标为(6,1.5);
设过P(6,1.5)、C(0,-2)的直线为y=k'x-2,则
1.5=6k'-2,
k'=
故直线l为y=x-2.
分析:(1)设AB两点的直线为y=kx+b,把点A(8,0),B(0,6)的坐标分别代入求出k和b的值即可;
(2)有(1)知:y=-x+6.再根据等腰三角形的性质求得OM的长,即点P的纵坐标,代入之间AB的解析式即可求得横坐标;
(2)先设存在使△PBC的面积能等于△ABO的面积的点P,根据面积相等求得点P的坐标,再利用待定系数法求得直线l的解析式.
点评:此题主要考查了用待定系数法求一次函数的解析式以及平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知点A(m,2m)和点B(3,m2-3),直线AB平行于x轴,则m等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,已知点A,B,C在⊙O上,AC∥OB,∠BOC=40°,则∠ABO=
20
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知点A1,A2,A3是抛物线y=
1
2
x2上的三点,线段A1B1,A2B2,A3B3都垂直于x轴,垂足分别为点B1,B2,B3,延长线段B2A2交线段A1A3于点C.
(1)在图(1)中,若点A1,A2,A3的横坐标依次为1,2,3,求线段CA2的长;
(2)若将抛物线改为y=
1
2
x2-x+1,如图2,点A1,A精英家教网2,A3的横坐标依次为三个连续整数,其他条件不变,求线段CA2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为M点关于O点完成一次“左转弯运动”.正方形ABCD和点P,P点关于A左转弯运动到P1,P1关于B左转弯运动到P2,P2关于C左转弯运动到P3,P3关于D左转弯运动到P4,P4关于A左转弯运动到P5,….
(1)请你在图中用直尺和圆规在图中确定点P1的位置;
(2)连接P1A、P1B,判断△ABP1与△ADP之间有怎样的关系?并说明理由.
(3)以D为原点、直线AD为y轴建立直角坐标系,并且已知点B在第二象限,A、P两点的坐标为(0,4)、(1,1),请你推断:P4、P2009、P2010三点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(0,2)、B(4,0),点C、D分别在直线x=1与x=2上,且CD∥x轴,则AC+CD+DB的最小值为
 

查看答案和解析>>

同步练习册答案