精英家教网 > 初中数学 > 题目详情
取线段AB的中点M,则AB-AM=BM
[     ]
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在方格纸上画图并回答问题.如图,已知线段AB及点C.
(1)画直线AC;
(2)取线段AB的中点O,再过点O画直线AC的垂线,垂足是F;点O到直线AC的距离是线段
OF
的长度;
(3)过点B画直线AC的平行线,交直线OF于点E;

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知方格纸上点O和线段AB,根据下列要求画图:
(1)画直线OA;
(2)过B点画直线OA的垂线,垂足为D;
(3)取线段AB的中点E,过点E画BD的平行线,交AO于点F.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系.
第一步:数轴上两点连线的中点表示的数.自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是
1
1
. 再试几个,我们发现:数轴上连接两点的线段的中点所表示的数是这两点所表示数的平均数.
第二步;平面直角坐标系中两点连线的中点的坐标(如图①)为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是(
x1+x2
2
x1+x2
2
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形时也可以.我们的结论是:平面直角坐标系中连接两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数.
第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则其对角线交点Q的坐标可以表示为Q(
x1+x3
2
x1+x3
2
y1+y3
2
y1+y3
2
),也可以表示为Q(
x2+x4
2
x2+x4
2
y2+y4
2
y2+y4
2
 ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的
和相等
和相等

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点0为坐标原点,直线y=
34
x+6
交x轴于点A,交y轴于点B,BD平分∠AB0,点C是x轴的正半轴上一点,连接BC,且AC=AB.
(1)求直线BD的解析式;
(2)过C作CH∥y轴交直线AB于点H,点P是射线CH上的一个动点,过点P作PE⊥CH,直线PE交直线BD于E、交直线BC于F,设线段EF的长为d(d≠0),点P的纵坐标为t,求d与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,取线段AB的中点M,y轴上有一点N.试问:是否存在这样的t的值,使四边形PEMN是平行四边形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列语句中,是命题的是(  )

查看答案和解析>>

同步练习册答案