相关习题
 0  189361  189369  189375  189379  189385  189387  189391  189397  189399  189405  189411  189415  189417  189421  189427  189429  189435  189439  189441  189445  189447  189451  189453  189455  189456  189457  189459  189460  189461  189463  189465  189469  189471  189475  189477  189481  189487  189489  189495  189499  189501  189505  189511  189517  189519  189525  189529  189531  189537  189541  189547  189555  366461 

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

如图,菱形ABCD的对角线AC与BD相交于点O,点E、F分别为边AB、AD的中点,连接EF、OE、OF。求证:四边形AEOF是菱形。

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

 

2010年4月14日,国内成品油价格迎来今年的首次提价,某市93号汽油的价格由6.25

元/升涨到了6.52元/升。某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:

车主的态度

百分比

A. 没有影响

4%

B. 影响不大,还可以接受

p

C. 有影响,现在用车次数减少了

52%

D. 影响很大,需要放弃用车

m

E. 不关心这个问题

10%

   (1) 结合上述统计图表可得:p=      ,m=      ;

   (2) 根据以上信息,请直接在答题卡中补全条形统计图;

   (3) 2010年4月末,若该市有机动车的私家车车主约200000人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

如图,AB是8O的直径,点C在BA的延长线上,直线CD与

   8O相切于点D,弦DF^AB于点E,线段CD=10,连接BD;

   (1) 求证:ÐCDE=2ÐB;

   (2) 若BD:AB=:2,求8O的半径及DF的长。

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

阅读下列材料,并解决后面的问题:

   ★ 阅读材料:

   (1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。

      例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。

   (2) 利用等高线地形图求坡度的步骤如下:(如图2)

 步骤一:根据两点A、B所在的等高线地形图,分别读出点A、B的高度;A、B两点

      的铅直距离=点A、B的高度差;

 步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为

      1:n,则A、B两点的水平距离=dn;

  步骤三:AB的坡度==

   ★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。

某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A经过B沿着公路AB、BP到学校P,小丁每天上学从家C沿着公路CP到学校P。该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米。

 (1) 分别求出AB、BP、CP的坡度(同一段路中间坡度的微小变化忽略不计);

 (2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在之间时,小明和小丁步行的平均速度均约为1米/秒)

 解:(1) AB的水平距离=1.8´50000=90000(厘米)=900(米),AB的坡度==

       BP的水平距离=3.6´50000=180000(厘米)=1800(米),BP的坡度==

             CP的水平距离=4.2´50000=210000(厘米)=2100(米),CP的坡度=   j   ;

 (2) 因为<<,所以小明在路段AB、BP上步行的平均速度均约为1.3米/秒。 因为  k   ,所以小丁在路段CP上步行的平均速度约为   l   米/秒,斜坡 AB的距离=»906(米),斜坡BP的距离=»1811(米),斜 坡CP的距离=»2121(米),所以小明从家到学校的时间==2090(秒)。

小丁从家到学校的时间约为   m   秒。因此,   n   先到学校。

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

 

某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品, 一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y=2x+3 (1£x£10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:

                     项目

该基地的累积产量占

两基地累积总产量的百分比

该基地累积存入仓库的量占

该基地的累积产量的百分比

            百分比

种植基地

60%

85%

40%

22.5%

(1) 请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;

(2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;

(3) 在(2)基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始 的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m= -x2+13.2x-1.6 (1£x£10且x为整数)。

问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧, BM^直线a于点M,CN^直线a于点N,连接PM、PN;

 (1) 延长MP交CN于点E(如图2)。j 求证:△BPM@△CPE;k 求证:PM = PN;

 (2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

 (3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN

 的形状及此时PM=PN还成立吗?不必说明理由。

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆州) 题型:解答题

如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;

  

(1) 求拋物线的函数表达式;

(2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。

j 当PO=PF时,分别求出点P和点Q的坐标;

k 在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;

l 当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆门) 题型:选择题

下列各数中,最小的实数是  …………………………………(    ) 

A.      B.3       C.0      D.

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆门) 题型:选择题

下列说法中,完全正确的是  ………………………………………………(    )

A.打开电视机,正在转播足球比赛

B.抛掷一枚均匀的硬币,正面一定朝上

C.三条任意长的线段都可以组成一个三角形

D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大

 

查看答案和解析>>

科目: 来源:2010年高级中等学校招生全国统一考试数学卷(湖北荆门) 题型:选择题

图4中几何体的主视图为  …………………………………………(    )

 

 

查看答案和解析>>

同步练习册答案