科目: 来源:2013年山东省荷泽市高级中等学校招生考试数学 题型:044
如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
科目: 来源:2013年山东省济宁市高级中等学校招生考试数学 题型:044
阅读材料:
若a,b都是非负实数,则a+b≥
.当且仅当a=b时,“=”成立.
证明:∵(
)2≥0,∴a-
+b≥0.
∴a+b≥
.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+
的最小值.
解:y=2x+
≥
=4.当且仅当2x=
,即x=1时,“=”成立.
当x=1时,函数取得最小值,y最小=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
+
)升.若该汽车以每小时x公里的速度匀速行驶,1小时ud耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
查看答案和解析>>
科目: 来源:2013年山东省济宁市高级中等学校招生考试数学 题型:044
如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
查看答案和解析>>
科目: 来源:2013年山东省济宁市高级中等学校招生考试数学 题型:044
人教版教科书对分式方程验根的归纳如下:
“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”
请你根据对这段话的理解,解决下面问题:
已知关于x的方程
-
=0无解,方程x2+kx+6=0的一个根是m.
(1)求m和k的值;
(2)求方程x2+kx+6=0的另一个根.
查看答案和解析>>
科目: 来源:2013年山东省济宁市高级中等学校招生考试数学 题型:044
(2013山东济宁,18,6分)钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)
查看答案和解析>>
科目: 来源:2013年山东省济宁市高级中等学校招生考试数学 题型:044
以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共抽查了多少名学生?
(2)将图1补充完整;
(3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度?
查看答案和解析>>
科目: 来源:2013年山东省聊城市高级中等学校招生考试数学 题型:044
已知在△ABC中,边BC的长与BC边上的高的和为20.
(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;
(2)当BC多长时,△ABC的面积最大?最大面积是多少?
(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说明理由,并求出其最小周长;如果不存在,请给予说明.
查看答案和解析>>
科目: 来源:2013年山东省聊城市高级中等学校招生考试数学 题型:044
如图,AB是⊙O的直径,AF是⊙O的切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=
,BE=2.
求证:(1)四边形FADC是菱形;
(2)FC是⊙O的切线.
查看答案和解析>>
科目: 来源:2013年山东省聊城市高级中等学校招生考试数学 题型:044
如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数
的图象在第二象限交于点C.如果点A的坐标为(2,0),B是AC的中点.
(1)求点C的坐标;
(2)求一次函数的解析式.
查看答案和解析>>
科目: 来源:2013年山东省聊城市高级中等学校招生考试数学 题型:044
如图,一只猫头鹰蹲在一颗树AC的点B处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠,猫头鹰向上飞至树顶C处.已知点B在AC上,DF=4米,短墙底部D与树的底部A的距离AD=2.7米,猫头鹰从C点观察F点的俯角为53°,老鼠躲藏处M距D点3米,且点M在DE上.
(参考数据:
).
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com