相关习题
 0  217192  217200  217206  217210  217216  217218  217222  217228  217230  217236  217242  217246  217248  217252  217258  217260  217266  217270  217272  217276  217278  217282  217284  217286  217287  217288  217290  217291  217292  217294  217296  217300  217302  217306  217308  217312  217318  217320  217326  217330  217332  217336  217342  217348  217350  217356  217360  217362  217368  217372  217378  217386  366461 

科目: 来源: 题型:解答题

如图,一次函数y=kx+b(k≠ 0)与反比例函数(m≠0)的图象有公共点A(1,2),D(a,-1).直线 轴于点N(3,0),与一次函数和反比例 函数的图象分别交于点B,C.

(1) 求一次函数与反比例函数的解析式;
(2) 求△ABC的面积。
(3) 根据图象回答,在什么范围时,一次函数的值大于反比例函数的值。

查看答案和解析>>

科目: 来源: 题型:解答题

已知一次函数y=kx+b的图象经过点A(0,-1),B(1,0),求这个一次函数的表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

如图所示,一次函数y=k1x+b与反比例函数y=(x<0)的图象相交于A,B两点,且与坐标轴的交点为(–6,0),(0,6),点B的横坐标为–4.

(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式k1x+b>的解.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)求腰BC的长;
(2)当Q在BC上运动时,求S与t的函数关系式;
(3)在(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?

查看答案和解析>>

科目: 来源: 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P(2,).

(1)请判断的形状并说明理由.
(2)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥轴于F,EB⊥轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:① S与t之间的函数关系式.
② 当t为何值时,S最大,并求S的最大值

查看答案和解析>>

科目: 来源: 题型:解答题

如图①,一条笔直的公路上有A、B、C三地,B、C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.根据图象进行以下探究:


(1)请在图①中标出A地的位置,并作简要的文字说明;
(2)求图②中M点的坐标,并解释该点的实际意义;
(3)在图②中补全甲车的函数图象,求甲车到A地的距离y1与行驶时间x的函数关系式;
(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在直角坐标系xOy中,直线与双曲线相交于、B两点,矩形的边恰好被点平分,边交双曲线于点,四边形的面积为2.

(1)求n的值;
(2)求不等式的解集

查看答案和解析>>

科目: 来源: 题型:解答题

在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水——清洗——灌水”中水量y(m3)与时间t(min)之间的函数关系式.

(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;
(2)问:排水、清洗、灌水各花多少时间?

查看答案和解析>>

科目: 来源: 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2.

查看答案和解析>>

同步练习册答案