相关习题
 0  217309  217317  217323  217327  217333  217335  217339  217345  217347  217353  217359  217363  217365  217369  217375  217377  217383  217387  217389  217393  217395  217399  217401  217403  217404  217405  217407  217408  217409  217411  217413  217417  217419  217423  217425  217429  217435  217437  217443  217447  217449  217453  217459  217465  217467  217473  217477  217479  217485  217489  217495  217503  366461 

科目: 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目: 来源: 题型:解答题

某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1) 求y与x的函数关系式
(2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3) 若每个月的利润不低于2160元,售价应在什么范围?

查看答案和解析>>

科目: 来源: 题型:解答题

某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

销售单价(元)
 
x
 
销售量y(件)
 
 
 
销售玩具获得利润w(元)
 
 
 
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

如图,抛物线经过点,且与轴交于点、点,若

(1)求此抛物线的解析式;
(2)若抛物线的顶点为,点是线段上一动点(不与点重合),,射线与线段交于点,当△为等腰三角形时,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.

(1)求点B的坐标
(2)求该二次函数的关系式;
(3)结合图象,解答下列问题:
①当x取什么值时,该函数的图象在x轴上方?
②当-1<x<2时,求函数y的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.

(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式.当销售单价为何值时,所获利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a≠0)经过点A、C.

(1)求抛物线的解析式;
(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;
(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

我区某房地产开发公司于2013年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格(单位:)与月份x(6≤x≤11,x为整数)之间满足一次函数关系,每月的销售面积为(单位:),其中y2=-2000x+26000(6≤x≤11,x为整数).
(1)求与月份的函数关系式;
(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
(3)2013年11月时,因受某些因素影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少,于是决定将12月份的销售价格在11月的基础上增加,该计划顺利完成.为了尽快收回资金,2014年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为万元,请根据以上条件求出的值为多少?

查看答案和解析>>

同步练习册答案