相关习题
 0  217332  217340  217346  217350  217356  217358  217362  217368  217370  217376  217382  217386  217388  217392  217398  217400  217406  217410  217412  217416  217418  217422  217424  217426  217427  217428  217430  217431  217432  217434  217436  217440  217442  217446  217448  217452  217458  217460  217466  217470  217472  217476  217482  217488  217490  217496  217500  217502  217508  217512  217518  217526  366461 

科目: 来源: 题型:解答题

某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?

查看答案和解析>>

科目: 来源: 题型:解答题

为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目: 来源: 题型:解答题

在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B.

(1)求:二次函数的解析式及B点坐标;
(2)若将抛物线为对称轴向右翻折后,得到一个新的二次函数,已知二次函数与x轴交于两点,其中右边的交点为C点.点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D.点E、点F也随之运动);
①当点E在二次函数y1的图像上时,求OP的长.
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,同时线段OC上另一个点Q从C点出发向O点做匀速运动,速度为每秒2个单位长度(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AC交于G点,以QG为边在QG的左侧作正方形QGMN(当Q点运动时,点G、点M、点N也随之运动),若P点运动t秒时,两个正方形分别有一条边恰好落在同一条直线上(正方形在x轴上的边除外),求此刻t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).

(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:

查看答案和解析>>

科目: 来源: 题型:解答题

某农户计划利用现有的一面墙(墙长8米),再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度).

(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

如图,抛物线与y轴交于点A,抛物线上的一点P在第四象限,连接AP与x轴交于点C,,且S△AOC=1,过点P作PB⊥y轴于点B.

(1)求BP的长;
(2)求抛物线与x轴的交点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由

查看答案和解析>>

科目: 来源: 题型:解答题

某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表表示:

等级(x级)
一级
二级
三级

生产量(y台/天)
78
76
74

(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出与之间的函数关系式:_____;
(2)每台护眼灯可获利z(元)关于等级x(级)的函数关系式:______;
(3)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

如图,直线交x轴于A点,交y轴于B点,抛物线经过点A、B,交x轴于另一点C,顶点为D.

(1)求抛物线的函数表达式;
(2)求点C、D两点的坐标;
(3)求△ABD的面积;

查看答案和解析>>

科目: 来源: 题型:解答题

如图,黎叔叔想用60m长的篱笆靠墙MN围成一个矩形花圃ABCD,已知墙长MN=30m.

(1)能否使矩形花圃ABCD的面积为400m2?若能,请说明围法;若不能,请说明理由.
(2)请你帮助黎叔叔设计一种围法,使矩形花圃ABCD的面积最大,并求出最大面积.

查看答案和解析>>

同步练习册答案