科目: 来源: 题型:解答题
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.![]()
(1) 求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3) 如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.![]()
查看答案和解析>>
科目: 来源: 题型:解答题
如图,抛物线
的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).![]()
(1)求抛物线的解析式;
(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.
查看答案和解析>>
科目: 来源: 题型:解答题
在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).![]()
(1)请直接写出点B,C的坐标:B( , ),C( , );
(2)求经过A,B,C三点的抛物线解析式;
(3)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A,B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(2)中的抛物线交于第一象限的点M.当AE=2时,抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用2万元,未租出的商铺每间每年交各种费用1万元.
(1)当每间商铺的年租金定为12万元时,能租出多少间?年收益多少万元?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益最大,最大值为多少?
查看答案和解析>>
科目: 来源: 题型:解答题
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:
若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:![]()
(1)用x的代数式表示t为:t= ;当0<x≤4时, y2与x的函数关系为y2= ;当 ≤x< 时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
查看答案和解析>>
科目: 来源: 题型:解答题
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?
查看答案和解析>>
科目: 来源: 题型:解答题
如图,抛物线y1=-
x2+3与x轴交于A、B两点,与直线y2=-
x+b相交于B、C两点.![]()
(1)求直线BC的解析式和点C的坐标;
(2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是 .
查看答案和解析>>
科目: 来源: 题型:解答题
如图,在矩形OABC中,点A(0,10),C(8,0).沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC, OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线
经过O,D,C三点.![]()
(1)求D的的坐标及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:解答题
已知二次函数图象的顶点是(-1,2),且过点(0,
).![]()
(1)求二次函数的表达式,并在图中画出它的图象;
(2)判断点(2,
)是否在该二次函数图象上;并指出当
取何值时,
?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com