相关习题
 0  217996  218004  218010  218014  218020  218022  218026  218032  218034  218040  218046  218050  218052  218056  218062  218064  218070  218074  218076  218080  218082  218086  218088  218090  218091  218092  218094  218095  218096  218098  218100  218104  218106  218110  218112  218116  218122  218124  218130  218134  218136  218140  218146  218152  218154  218160  218164  218166  218172  218176  218182  218190  366461 

科目: 来源: 题型:阅读理解

阅读材料:
如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.

解决问题:
(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.
(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=
3
,AC=
2

①求
BE′
AD′
的值及∠BFA的度数;
②若D为AC的中点,求△AOC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒
43
个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动
(1)①当t=3秒时,点P走过的路径长为
 
;②当t=
 
秒时,点P与点E重合;③当t=
 
秒时,PE∥AB;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.

查看答案和解析>>

科目: 来源: 题型:

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

(1)如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)
(2)如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.
(3)利用(2)的结论解决下列问题:
我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.(如图3)若O是△ABC的重心,连结AO并延长交BC于D,则
AO
AD
=
2
3
,这样面积比就有一些“漂亮”结论,利用这些性质解决以下问题.
若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图4),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>

科目: 来源: 题型:

两个全等的直角三角板ABC和DEF重叠在一起,∠BAC=∠EDF=30°,AC=DF=2.△ABC固定不动,将△DEF沿AC平移(点D在线段AC上移动).
(1)猜想与证明:如图①,当点D为AC的中点时,请你猜想四边形BDCE的性状,并证明结论;
(2)思考与验证:如图②,连接BD,BE,CE,四边形BDCE的形状在不断的变化,它的面积变化吗?若不变,求出其面积;若变化,请说明理由;
(3)操作与计算:如图③,当点D为AC的中点时,将点D固定,然后再将△DEF绕点D顺时针旋转60°,若点P为线段AC延长线上一动点,求PE+PF的最小值.

查看答案和解析>>

科目: 来源: 题型:

好学的小宸利用电脑作了如下的探索:
(1)如图①,将边长为2的等边三角形复制若干个后向右平移,使一条边在同一直线上.则△A2C1B1的面积为
 

(2)求△A4C3B3的面积;
(3)在保持图①中各三角形的边OB1=B1B2=B2B3=B3B4=2不变的前提下,小宸又作了如下探究:将顶点A1、A2、A3、A4向上平移至同一高度(如图②),若OA4=OB4,试判断以OA2、OA3和OA4为三边能否构成三角形?若能,请判断这个三角形的形状;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

在等边三角形ABC中,AD⊥BC于点D.
(1)如图1,请你直接写出线段AD与BC之间的数量关系:AD=
 
BC;
(2)如图2,若P是线段BC上一个动点(点P不与点B、C重合),联结AP,将线段AP绕点A逆时针旋转60°,得到线段AE,联结CE,猜想线段AD、CE、PC之间的数量关系,并证明你的结论;
(3)如图3,若点P是线段BC延长线上一个动点,(2)中的其他条件不变,按照(2)中的作法,请在图3中补全图形,并直接写出线段AD、CE、PC之间的数量关系.

查看答案和解析>>

科目: 来源: 题型:

如图1,在锐角△ABC中,AB=5,AC=4
2
,∠ACB=45°.
计算:求BC的长;
操作:
将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时.
(1)证明:A1C1⊥CC1
(2)求四边形A1BCC1的面积;
探究:
将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.连结AA1,CC1,如图3.若△ABA1的面积为5,求点C到BC1的距离;
拓展:
将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,如图4.
(1)若点P是线段AC的中点,求线段EP1长度的最大值与最小值;
(2)若点P是线段AC上的任一点,直接写出线段EP1长度的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”
(1)已知:如图,在△ABC中,∠C=90°,BC=2
3
,AB=2
7
.求证:△ABC是“匀称三角形”;

(2)在平面直角坐标系xOy中,如果三角形的一边在x轴上,且这边的中线恰好等于这边的长,我们又称这个三角形为“水平匀称三角形”.如图,现有10个边长是1的小正方形组成的长方形区域记为G,每个小正方形的顶点称为格点,A(3,0),B(4,0),若C、D(C、D两点与O不重合)是x轴上的格点,且点C在点A的左侧.在G内使△PAC与△PBD都是“水平匀称三角形”的点P共有几个?其中是否存在横坐标为整数的点P,如果存在请求出这个点P的坐标,如果不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:

问题情境:数学活动课上,老师提出了一个问题:如图①,已知在△ABC中,∠ACB=90°,AC=BC,点D为直线AB上的一动点(点D不与点A,B重合)连接CD,以点C为旋转中心,将CD逆时针旋转90°得到CE,连接BE,试探索线段AB,BD,BE之间的数量关系.
小组展示:“希望”小组展示如下:解:线段AB,BD,BE之间的数量关系是AB=BE+BD.
证明:如图①∵∠ACB=90°,∠DCE=90°
∴∠ACB=∠DCE
∴∠ACB=∠DCB=∠DCE-∠DCB
即∠ACD=∠BCE
∵CE是由CD旋转得到.
∴CE=CD
则在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(依据1)
∴AD=BE(依据2)
∵AB=AD+BD
∴AB=BE+BD
反思与交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
 

依据2:
 

(2)“腾飞”小组提出了与“希望”小组不同的意见,认为还有两种情况需要考虑,你根据他们的分类情况直接写出发现的结论:
①如图②,当点D在线段AB的延长线上时,三条点段AB,BD,BE之间的数量关系是
 

②如图③,当点D在线段BA的延长线上时,三条线段AB,BD,BE之间的数量关系是
 

(3)如图④,当点D在线段BA的延长线上时,若CD=4,线段DE的中点为F,连接FB,求FB的长度.

查看答案和解析>>

科目: 来源: 题型:

取一张矩形纸片ABCD,沿AD边上任意一点M折叠后,点D、C分别落在D′、C′的位置,如图所示.设折痕为MN,D′C′交BC于点E,且∠AM D′=α,∠NE C′=β.
(1)探究α、β之间的数量关系,并说明理由.
(2)折叠后是否存在△AD′M与△C′EN全等的情况?若存在,请给出证明;若不存在,请直接作出否定的回答,不必说明理由.
(3)设α=30°,当△AD′M是等腰三角形时,试确定点M的位置.

查看答案和解析>>

同步练习册答案