相关习题
 0  221317  221325  221331  221335  221341  221343  221347  221353  221355  221361  221367  221371  221373  221377  221383  221385  221391  221395  221397  221401  221403  221407  221409  221411  221412  221413  221415  221416  221417  221419  221421  221425  221427  221431  221433  221437  221443  221445  221451  221455  221457  221461  221467  221473  221475  221481  221485  221487  221493  221497  221503  221511  366461 

科目: 来源:不详 题型:解答题

已知△ABC,∠BAC=90°,AB=AC=4,分别以AC,AB所在直线为x轴,y轴建立直角坐标系(如图).点M(m,n)是直线BC上的一个动点,设△MAC的面积为S.
(1)求直线BC的解析式;
(2)求S关于m的函数解析式;
(3)是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,四边形OABC的顶点A(0,4),B(-2,4),C(-4,0).过作B、C直线l,将直线l平移,平移后的直线l与x轴交于D,与y轴交于点E.
探究:当直线l向左或向右平移时(包括直线l与BC直线重合),在直线AB上是否存在P,使△PDE为等腰三角形?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知,如图,直线l1y=-
3
2
x+3
与y轴交于点A,与直线l2交于x轴上同一点B,直线l2交y轴于点C,且点C与点A关于x轴对称.
(1)求直线l2的解析式;
(2)若点P是直线l1上任意一点,求证:点P关于x轴的对称点P′一定在直线l2上;
(3)设D(0,-1),平行于y轴的直线x=t分别交直线l1和l2于点E、F.是否存在t的值,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某品牌产品公司献爱心,捐出了二月份的全部利润.已知该公司二月份只售出了A、B、C三种型号的产品若干件,每种型号产品不少于4件,二月份支出包括这批产品进货款20万元和其他各项支出(含人员工资和杂项开支)1.9万元.这三种产品的售价和进价如下表,人员工资y1(万元)和杂项支出y2(万元)分别与销售总量x(件)成一次函数关系(如图).
型号
进价(万元/件)0.50.80.7
售价(万元/件)0.81.20.9
(1)求y1与x的函数关系;
(2)求二月份该公司的总销售量;
(3)设公司二月份售出A种产品t件,二月份总销售利润为W(万元),求W与t的函数关系式及t的取值范围;
(4)请求出该公司这次爱心捐款金额的最大值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标系中,A(0,6),C(8,0),OA、AC的中点为M、N,动点P从O出发以每秒1个单位的速度按照箭头方向通过C、N到M,设P点从O开始运动的路程为x,△AOP的面积为y.
(1)求直线AC的解析式;
(2)点P从O出发到M止,求y与x的函数关系式;
(3)若⊙P的半径为3,⊙N的半径为1;在点P运动过程中,t为何值时⊙P与⊙N相切,(直接写出t值).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点C,且点C为线段OB的中点.
(1)求直线AC的表达式;
(2)如果四边形ACPB是平行四边形,求点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

为响应薄熙来书记建设“森林重庆”的号召,某园艺公司从2010年9月开始积极进行植树造林.该公司第x月种植树木的亩数y(亩)与x之间满足y=x+4,(其中x从9月算起,即9月时x=1,10月时x=2,…,且1≤x≤6,x为正整数).由于植树规模扩大,每亩的收益P(千元)与种植树木亩数y(亩)之间存在如图(25题图)所示的变化趋势.
(1)根据如图所示的变化趋势,直接写出P与y之间所满足的函数关系表达式;
(2)行动实施六个月来,求该每月收益w(千元)与月份x之间的函数关系式,并求x为何值时总收益最大?此时每亩收益为多少?
(3)进入植树造林的第七个月,政府出台了一项激励措施:在“植树造林”过程中,每月植树面积与第六个月植树面积相同的部分,按第六月每亩收益进行结算;超出第六月植树面积的部分,每亩收益将按第六月时每亩的收益再增加0.6m%进行结算.这样,该公司第七月植树面积比第六月增加了m%.另外,第七月时公司需对前六个月种植的所有树木进行保养,除去成本后政府给予每亩4m%千元的保养补贴.最后,该公司第七个月获得种植树木的收益和政府保养补贴共702千元.请通过计算,估算出m的整数值.(参考数据:422=1764,432=1849,442=1936).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A?B?C方向以每秒2cm的速度运动,到点C停止,点Q沿A?D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2
(1)当0≤x≤1时,求y与x之间的函数关系式;
(2)当橡皮筋刚好触及钉子时,求x值;
(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求直线CD的解析式;
(2)是否存在x轴上的点E,使得以A、O、E为顶点的三角形与△DAO相似?若存在,请写出符合条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案