相关习题
 0  222258  222266  222272  222276  222282  222284  222288  222294  222296  222302  222308  222312  222314  222318  222324  222326  222332  222336  222338  222342  222344  222348  222350  222352  222353  222354  222356  222357  222358  222360  222362  222366  222368  222372  222374  222378  222384  222386  222392  222396  222398  222402  222408  222414  222416  222422  222426  222428  222434  222438  222444  222452  366461 

科目: 来源:不详 题型:解答题

如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN于C,设AD=x,BC=y,求y与x的函数关系式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知矩形AOBC,AO=2,BO=3,函数y=
k
x
的图象经过点C.
(1)直接写出点C的坐标;
(2)将矩形AOBC分别沿直线AC,BC翻折,所得到的矩形分别与函数y=
k
x
(x>0)交于点E,F求线段EF.
(3)若点P、Q分别在函数y=
k
x
图象的两个分支上,请直接写出线段P、Q两点的最短距离(不需证明);并利用图象,求当
k
x
≤x
时x的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,反比例函数y=
8
x
的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.
(1)设矩形OABC的对角线交于点E,求出E点的坐标;
(2)若直线y=2x+m平分矩形OABC面积,求m的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,反比例函数y=
k
x
(k<0)的图象经过点A(-
3
,m),过A作AB⊥x轴于点B,△AOB的面积为
3
.?
(1)求k和m的值;?
(2)若过A点的直线y=ax+b与x轴交于C点,且∠ACO=30°,求此直线的解析式.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,双曲线y=
k
x
(k>0)经过平行四边形OACB上的点A(1,2),交BC于点D,点D的横坐标是3,则平行四边形AOBC的面积是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=
1
2x
的图象在第一限内的一个分支,点P是这条曲线的任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N为垂足)分别与直线AB相交于点E和F.
(1)求△OEF的面积(a,b的代数式表示);
(2)△AOF与△BOE是否一定相似?如果一定相似,请证明;如果不一定相似,请说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,是否有大小始终保持不变的角?若有,请求出其大小;若没有,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

反比例函数y=
m
x
(m>0)第一象限内的图象如图所示,△OP1B1,△B1P2B2均为等腰三角形,且OP1B1P2,其中点P1,P2在反比例函数y=
m
x
(m>0)的图象上,点B1,B2在x轴上,则
B1B2
OB1
的值为______.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2),若反比例函数y=
k
x
(x>0)的图象经过点A,则k的值为(  )
A.-6B.-3C.3D.6

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直线y=kx+4与函数y=
m
x
(x>0,m>0)的图象交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若△COD的面积是△AOB的面积的
2
倍,求k与m之间的函数关系式;
(2)在(1)的条件下,是否存在k和m,使得以AB为直径的圆经过点P(2,0)?若存在,求出k和m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:O是坐标原点,P(m,n)(m>0)是函数y=
k
x
(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+
n4
4

(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠
n4
2
,求OP2的最小值.

查看答案和解析>>

同步练习册答案