相关习题
 0  222276  222284  222290  222294  222300  222302  222306  222312  222314  222320  222326  222330  222332  222336  222342  222344  222350  222354  222356  222360  222362  222366  222368  222370  222371  222372  222374  222375  222376  222378  222380  222384  222386  222390  222392  222396  222402  222404  222410  222414  222416  222420  222426  222432  222434  222440  222444  222446  222452  222456  222462  222470  366461 

科目: 来源:不详 题型:填空题

两个反比例函数y=
3
x
y=
6
x
在第一象限内的图象如图所示,点P1、P2在反比例函数图象上,过点P1作x轴的平行线与过点P2作y轴的平行线相交于点N,若点N(m,n)恰好在y=
3
x
的图象上,则NP1与NP2的乘积是______.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,直线y=-x+b与双曲线y=-
1
x
(x<0)交于点A,与x轴交于点B,则OA2-OB2=______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,反比例函数y=
k
x
(x>0)
的图象经过边长为3的正方形OABC的顶点B,点P(m,n)为该函数图象上的一动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,设矩形OEPF和正方形OABC不重合部分的面积为S(即图中阴影部分的面积).
(1)求k的值;
(2)当m=4时,求n和S的值;
(3)求S关于m的函数解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数y=
m
x
(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)观察图形,当x取何值时,一次函数值大于反比例函数值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直线y=k和双曲线y=
k
x
相交于点P,过P点作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2的横坐标是连续的整数,过点A1,A2别作x轴的垂线,与双曲线y=
k
x
(x>0)及直线y=k分别交于点B1,B2,C1,C2
(1)求A0点坐标;
(2)求
C1B1
A1B1
C2B2
A2B2
的值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知反比例函数的图象经过点(2,-1),则它的解析式是(  )
A.y=-2xB.y=2xC.y=
2
x
D.y=-
2
x

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知直线y=2x-1与双曲线y=
k
x
交于第一象限内一点A(m,1)
(1)直接写出该双曲线的函数表达式:______.
(2)根据图象直接写出解不等式2x-1>
1
x
(x>0)的解集:______.
(3)若点B(
a2+b2
2ab
,n)(a≠b)在双曲线y=
k
x
上,点P(x0,0)是x负半轴上一动点,分别过点A、B作x轴的垂线交于点E1和点E2,连接PA、PB.
①求证:n<1;
②当P点沿x轴向点E1运动的过程中,试探索△PAE1的面积与△PBE2面积的大小关系.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,圆P的半径为2,圆心p在函数y=
6
x
(x>0)的图象上运动,当圆P与x轴相切时,点P的坐标为______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某人以按揭方式(首付一部分现金,剩余部分按每月分期付款)购买了价格为16万的汽车,交了首付之后,每月付款y元,x个月还清,y与x的函数关系如图所示,试根据题中提供的信息回答下列问题:
(1)确定y与x的函数关系式,并求出首付现金多少元.
(2)某人若打算120个月结清余额,则每月应付多少元?
(3)某人打算每月付款不超过1500元,则他至少几个月还清余额?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知反比例函数y=
k
x
过点P,P点的坐标为(3-m,2m),m是分式方程
m-3
m-2
+1=
3
2-m
的解,PA⊥x轴于点A,PB⊥y轴于点B.
(1)试判断四边形PAOB的形状,并说明理由;

(2)连接AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连接OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明;

(3)若M为反比例函数y=
k
x
在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案