相关习题
 0  223600  223608  223614  223618  223624  223626  223630  223636  223638  223644  223650  223654  223656  223660  223666  223668  223674  223678  223680  223684  223686  223690  223692  223694  223695  223696  223698  223699  223700  223702  223704  223708  223710  223714  223716  223720  223726  223728  223734  223738  223740  223744  223750  223756  223758  223764  223768  223770  223776  223780  223786  223794  366461 

科目: 来源:不详 题型:解答题

如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C.

(1)点A的坐标为          点B的坐标为         ,点C的坐标为        
(2)设抛物线y=x2-2x-3的顶点坐标为M,求四边形ABMC的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件。
(1)求售价为70元时的销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图在平面直角坐标系内,以点C(1,1)为圆心,2为半径作圆,交x轴于A、B两点,开口向下的抛物线经过A、B两点,且其顶点P在⊙C上。

(1)写出A、B两点的坐标;
(2)确定此抛物线的解析式;

查看答案和解析>>

科目: 来源:不详 题型:单选题

二次函数y=2(x+1)2-3的图象的对称轴是(   )
A.直线x=-1B.直线x=1C.直线x=-3D.直线x=3

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是(   )
A.a+b=1B.b<2aC.a-b=-1D.ac<0

查看答案和解析>>

科目: 来源:不详 题型:填空题

请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2) .你写出的函数表达式是                    

查看答案和解析>>

科目: 来源:不详 题型:解答题

某区政府大力扶持大学生创业.李刚在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李刚每月获得利润为w(元),当销售单价定为每台多少元时,每月可获得最大利润?
(2)如果李刚想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李刚想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目: 来源:不详 题型:解答题

(12分)如图,在直角坐标系中,已知点A(0,2),点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.

(1)填空:点D的坐标为         ,点E的坐标为          
(2)若抛物线y=aa2+ba+c(a≠0)经过A,D,E三点,求该抛物线的解析式;
(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
① 在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围;
② 运动停止时,请直接写出此时的抛物线的顶点坐标.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为                     

查看答案和解析>>

科目: 来源:不详 题型:解答题

某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,
薄板的边长(cm)
20
30
出厂价(元/张)
50
70
⑴求一张薄板的出厂价与边长之间满足的函数关系式;
⑵已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长这之间满足的函数关系式.
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案