相关习题
 0  223690  223698  223704  223708  223714  223716  223720  223726  223728  223734  223740  223744  223746  223750  223756  223758  223764  223768  223770  223774  223776  223780  223782  223784  223785  223786  223788  223789  223790  223792  223794  223798  223800  223804  223806  223810  223816  223818  223824  223828  223830  223834  223840  223846  223848  223854  223858  223860  223866  223870  223876  223884  366461 

科目: 来源:不详 题型:解答题

如图,抛物线=-+5经过点C(4,0),与轴交于另一点A,与轴交于点B.

(1)求点A、B的坐标;
(2)P是轴上一点,△PAB是等腰三角形,试求P点坐标;
(3)若·Q的半径为1,圆心Q在抛物线上运动,当·Q与轴相切时,求·Q上的点到点B的最短距离.

查看答案和解析>>

科目: 来源:不详 题型:填空题

校运动会铅球比赛时,小林推出的铅球行进的高度(米)与水平距离(米)满足关系式为:,则小林这次铅球推出的距离是      米.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某市场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:
(1)若商场平均每天要盈利1200元,且让顾客感到实惠,每件衬衫应降价多少元?
(2)要使商场平均每天盈利最多,请你帮助设计降价方案。

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.

(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线与直线AB交于点A(-1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的解析式;
(2)设点D的横坐标为m,则用m的代数式表示线段DC的长;
(3)在(2)的条件下,若△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;
(4)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目: 来源:不详 题型:单选题

定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为 [m,1-m,-1]的函数的一些结论:
① 当m=-1时,函数图象的顶点坐标是(1,0);
② 当m>0时,函数图象截x轴所得的线段长度大于1;
③ 当m<0时,函数在x>时,y随x的增大而减小;
④ 不论m取何值,函数图象经过一个定点.
其中正确的结论有            ( )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目: 来源:不详 题型:解答题

某黄金珠宝商店,今年4月份以前,每天的进货量与销售量均为1000克,进入4月份后,每天的进货量保持不变,因国际金价大跌走熊,市场需求量不断增加.如图是4月前后一段时期库存量(克)与销售时间(月份)之间的函数图象. (4月份以30天计算)

商品名称
金 额
A
B
投资金额x(万元)
x
5
x
1
5
销售收入y(万元)
y1=kx
(k≠0)
3
y2=ax2+bx(a≠0)
2.8
10
(1)该商店   月份开始出现供不应求的现象,4月份的平均日销售量为   克?
(2)为满足市场需求,商店准备投资20万元同时购进A、B两种新黄金产品。其中购买A、B两种新黄金产品所投资的金额与销售收入存在如图所示的函数对应关系. 请你判断商店这次投资能否盈利?
(3)在(2)的其他条件不变的情况下,商店准备投资m万元同时购进A、B两种新黄金产品,并实现最大盈利3.2万元,请求出m的值.(利润=销售收入-投资金额)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,一抛物线经过点A、B、C,点 A(?2,0),点B(0,4),点C(4,0),该抛物线的顶点为D.

(1)求该抛物线的解析式及顶点D坐标;
(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标;
(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.

(1)填空:A点坐标为(____,____),D点坐标为(____,____);
(2)若抛物线y= x2+bx+c经过C、D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,二次函数的图象与轴交于B、C两点(点B在点C的左侧),一次函数的图象经过点B和二次函数图象上另一点A. 点A的坐标(4 ,3),.

(1)求二次函数和一次函数解析式;
(2)若点P在第四象限内,求面积S的最大值并求出此时点P的坐标;
(3)若点M在直线AB上,且与点A的距离是到轴距离的倍,求点M的坐标.

查看答案和解析>>

同步练习册答案