相关习题
 0  223708  223716  223722  223726  223732  223734  223738  223744  223746  223752  223758  223762  223764  223768  223774  223776  223782  223786  223788  223792  223794  223798  223800  223802  223803  223804  223806  223807  223808  223810  223812  223816  223818  223822  223824  223828  223834  223836  223842  223846  223848  223852  223858  223864  223866  223872  223876  223878  223884  223888  223894  223902  366461 

科目: 来源:不详 题型:单选题

如果反比例函数的图象如图所示,那么二次函数的图象大致为(   )

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司推出一种高效环保型洗涤用品,年初上市后公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)反映了该公司年初以来累积利润S(万元)与销售时间(月)之间的关系(即前个月的利润总和S与的关系).根据图象提供的信息,解答下列问题.

(1)如图,已知图象上的三点坐标,求累积利润S(万元)与时间(月)之间的函数关系式;
(2)求截止到几月未公司累积利润可达到30万元?
(3)求第8月公司所获利润是多少元?

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知二次函数y=(x-3m)²+m-1(m为常数),当m取不同的值时,其图象构成一个“抛物线系”,该抛物线系中所有抛物线的顶点都在一条直线上,那么这条直线的解析式是           

查看答案和解析>>

科目: 来源:不详 题型:填空题

若实数a,b满足a+b2=2,则2a2+10b2的最小值为             .

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.

(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比.请你计算这个“W”图案的高与宽的比到底是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数的图象和性质.
①填写下表,画出函数的图象;
x




1
2
3
4

y

 
 
 
 
 
 
 


②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目: 来源:不详 题型:解答题

根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.

(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?

查看答案和解析>>

科目: 来源:不详 题型:填空题

在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x
-3
-2
-1
1
2
3
4
5
6
y
-14
-7
-2
2
m
n
-7
-14
-23
=        =      .

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线的函数解析式为yax2b x-3ab<0),若这条抛物线经过点(0,-3),方程ax2b x-3a=0的两根为x1x2,且|x1x2|=4.
⑴求抛物线的顶点坐标.
⑵已知实数x>0,请证明x≥2,并说明x为何值时才会有x=2.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求直线AC的解析式及BD两点的坐标;
(2)点Px轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点APQC为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.

查看答案和解析>>

同步练习册答案