相关习题
 0  223844  223852  223858  223862  223868  223870  223874  223880  223882  223888  223894  223898  223900  223904  223910  223912  223918  223922  223924  223928  223930  223934  223936  223938  223939  223940  223942  223943  223944  223946  223948  223952  223954  223958  223960  223964  223970  223972  223978  223982  223984  223988  223994  224000  224002  224008  224012  224014  224020  224024  224030  224038  366461 

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=-
1
2
x2+bx+c
经过A(-2,0),C(4,0)两点,和y轴相交于点B,连接AB、BC.
(1)求抛物线的解析式(关系式).
(2)在第一象限外,是否存在点E,使得以BC为直角边的△BCE和Rt△AOB相似?若存在,请简要说明如何找到符合条件的点E,然后直接写出点E的坐标,并判断是否有满足条件的点E在抛物线上;若不存在,请说明理由.
(3)在直线BC上方的抛物线上,找一点D,使S△BCD:S△ABC=1:4,并求出此时点D的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商店经销甲、乙两种商品,现有如下信息:
信息1:甲、乙两种商品的进货单价之和是5元.
信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.
信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.
请根据以上信息,解答下列问题:
(Ⅰ)甲、乙两种商品的进货单价各是多少元?
(Ⅱ)该商品平均每天卖出甲商品500件和乙商品300件,经调查发现,甲、乙两种商品零售单价分别降0.1元,这两种商品每天可各多销售100件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.
(1)求抛物线解析式;
(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

一名学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系为y=-
1
12
x2+
2
3
x+
5
3

(1)画出函数的图象.
(2)观察图象,指出铅球推出的距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图:抛物线y=ax2-4ax+m与x轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C.
(1)求抛物线的对称轴和点B的坐标;
(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式;
(3)在(2)的条件下,设抛物线的顶点为G,连接BG、CG、求△BCG的面积.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图所示,桥拱是抛物线形,其函数的表达式为y=-
1
4
x2
,当水位线在AB位置时,水面宽12m,这时水面离桥顶的高度为(  )
A.3mB.2
6
m
C.4
3
m
D.9m

查看答案和解析>>

科目: 来源:不详 题型:解答题

衢江区某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价 w1与上市时间t的关系用图甲的一条折线表示;西红柿的种植成本 w2与上市时间t的关系用图乙表示的抛物线段表示.
(1)求出图甲表示的市场售价 w1与时间t的函数关系式;
(2)求出图乙表示的种植成本 w2与时间t的函数关系式;
(3)市场售价减去种植成本为纯收益,当0<t≤200时,何时上市西红柿纯收益最大?(售价与成本单位:元/百千克,时间单位:天)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x轴的另一个交点;
(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数的图象过(0,3),(3,0),且对称轴为直线x=1.
(1)求这个二次函数的图象的解析式;
(2)指出二次函数图象的顶点坐标;
(3)利用草图分析,当函数值y>0时,x的取值范围是多少.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在平面直角坐标系xOy中:已知抛物线y=-
1
2
x2+(m2-m-
5
2
)x+
1
3
(5m+8)
的对称轴为x=-
1
2
,设抛物线与y轴交于A点,与x轴交于B、C两点(B点在C点的左边),锐角△ABC的高BE交AO于点H.
(1)求抛物线的解析式;
(2)在(1)中的抛物线上是否存在点P,使BP将△ABH的面积分成1:3两部分?如果存在,求出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案