相关习题
 0  223845  223853  223859  223863  223869  223871  223875  223881  223883  223889  223895  223899  223901  223905  223911  223913  223919  223923  223925  223929  223931  223935  223937  223939  223940  223941  223943  223944  223945  223947  223949  223953  223955  223959  223961  223965  223971  223973  223979  223983  223985  223989  223995  224001  224003  224009  224013  224015  224021  224025  224031  224039  366461 

科目: 来源:不详 题型:解答题

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线y=-
1
2
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究
PQ
NP+BQ
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标系中,OA=OC,AB=4,tan∠BCO=
1
5
,二次函数y=ax2+bx+c图象经过A、B、C三点.
(1)求A,B,C三点的坐标;
(2)求二次函数的解析式;
(3)求过点A、B和抛物线顶点D的圆的半径.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为(  )
A.-
2
3
B.-
2
3
C.-2D.-
1
2

查看答案和解析>>

科目: 来源:不详 题型:解答题

新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A,B,C的横坐标分别为4,10,12.
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4
3
,PC=8
3
,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=
3
时,求tanB的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(c,-2),,求证:这个二次函数图象的对称轴是x=3.
题目中的矩形框部分是一段墨水污染了无法辨认的文字.
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由;
(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知两直线l1,l2分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点D,如图所示.
(1)求证:△AOC△COB;
(2)求出抛物线的函数解析式;
(3)当直线l1绕点C顺时针旋转α(0°<α<90°)时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;
(4)当直线l1绕点C旋转时,它与抛物线的另一个交点为E,请找出使△ECD为等腰三角形的点E,并求出点E的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,C(0,3),过点C开口向下的抛物线交x轴于点A、B(点A在点B的右边),已知∠CBA=45°,tanA=3;
(1)求A、B两点坐标;
(2)求抛物线解析式及抛物线顶点D的坐标;
(3)E(0,m)为y轴上一动点(不与点C重合)
①当直线EB与△BCD外接圆相切时,求m的值;
②指出点E的运动过程中,∠DEC与∠DBC的大小关系及相应m的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.

查看答案和解析>>

同步练习册答案