相关习题
 0  223863  223871  223877  223881  223887  223889  223893  223899  223901  223907  223913  223917  223919  223923  223929  223931  223937  223941  223943  223947  223949  223953  223955  223957  223958  223959  223961  223962  223963  223965  223967  223971  223973  223977  223979  223983  223989  223991  223997  224001  224003  224007  224013  224019  224021  224027  224031  224033  224039  224043  224049  224057  366461 

科目: 来源:不详 题型:解答题

已知,如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),其对称轴为直线x=2.
(1)求抛物线的解析式;
(2)若点P为抛物线的顶点,求△PBC的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线C1如图1所示,现将C1以y轴为对称轴进行翻折,得到新的抛物线C2
(1)求抛物线C2的解析式;
(2)在图1中,将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,请直接(不需要写过程)写出矩形的周长;
(3)如图2,若抛物线C1的顶点为M,点P为线段BM上一动点(不与点M、B重合),PN⊥x轴于N,请求出PC+PN的最小值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图二次函数y=ax2+bx+c的图象经过A、B、C三点.
(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;
(2)求此抛物线的顶点坐标和对称轴;
(3)观察图象,当x取何值时,y<0,y=0,y>0.

查看答案和解析>>

科目: 来源:不详 题型:单选题

某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面
40
3
米,则水流下落点B离墙距离OB是(  )
A.2米B.3米C.4米D.5米

查看答案和解析>>

科目: 来源:不详 题型:解答题

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{1,-4,1}的函数的图象向下平移2个单位,得到一个新函数图象,求这个新函数图象的解析式;
(2)“特征数”是{0,-
3
3
3
}
的函数图象与x、y轴分别交点C、D,“特征数”是{0,-
3
3
}
的函数图象与x轴交于点E,点O是原点,判断△ODC与△OED是否相似,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:直角梯形OABC中,BCOA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD.直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系,若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______.
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
3
2
).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=
2
x
(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=
k
x
(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=
3
5
x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD.
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,梯形ABCD是世纪广场的示意图,上底AD=90m,下底BC=150m,高100m,虚线MN是梯形ABCD的中位线.要设计修建宽度相同的一条横向和两条纵向大理石通道,横向通道EGHF位于MN两旁,且EF、GH与MN之间的距离相等,两条纵向通道均与BC垂直,设通道宽度为xm.
(1)试用含x的代数式表示横向通道EGHF的面积s1
(2)若三条通道的面积和恰好是梯形ABCD面积的
1
4
时,求通道宽度为x;
(3)经测算大理石通道的修建费用y1(万元)与通道宽度为xm的关系式为:y1=14x,广场其余部分的绿化费用为0.05万元/m2,若设计要求通道宽度x≤8m,则宽度x为多少时,世纪广场修建总费用最少?最少费用为多少?

查看答案和解析>>

同步练习册答案