相关习题
 0  223877  223885  223891  223895  223901  223903  223907  223913  223915  223921  223927  223931  223933  223937  223943  223945  223951  223955  223957  223961  223963  223967  223969  223971  223972  223973  223975  223976  223977  223979  223981  223985  223987  223991  223993  223997  224003  224005  224011  224015  224017  224021  224027  224033  224035  224041  224045  224047  224053  224057  224063  224071  366461 

科目: 来源:不详 题型:填空题

如图所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙,其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m的栅栏、设每间羊圈的长为xm.
(1)请你用含x的关系式来表示围成三间羊圈所利用的旧墙的总长度L=______,三间羊圈的总面积S=______;
设宽为x,(2)S可以看成x的______,这里自变量x的取值范围是______;
(3)请计算,当羊圈的长分别为2m、3m、4m和5m时,羊圈的总面积分别为______m2、______m2______m2、______m2,在这些数中,x取______m时,面积S最大.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2
(1)求y与x的函数表达式;
(2)求当边长增加多少时,面积增加8cm2

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标系中,抛物线与坐标轴分别交于A(0,3),B(
3
,0),C(3
3
,0).
(1)求该抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切于点E,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=-
1
2
x+b(b>0)
分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标.
(2)若点P关于x轴的对称点为P′,试求经过M、N、P′三点的抛物线的解析式.
(3)当b值由小到大变化时,求S与b的函数关系式.
(4)若在直线y=-
1
2
x+b(b>0)
上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司推出一款新型手机,投放市场以来前3个月的利润情况如图所示,该图可以近似看作抛物线的一部分.请结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式;
(2)该公司在经营此款手机过程中,第几月的利润能达到24万元?
(3)若照此经营下去,请你结合所学的知识,对公司在此款手机的经营状况(是否亏损?何时亏损?)作预测分析.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
(3)若点P为第一象限抛物线上一动点,连接BP、PE,求四边形ABPE面积的最大值,并求此时P点的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线y=mx2+(3-m)x+m2+m交x轴于C(x1,0),D(x2,0)两点,(x1x2)且(x1+1)(x2+1)=5
(1)试确定m的值;
(2)过点A(-1,-5)和抛物线的顶点M的直线交x轴于点B,求B点的坐标;
(3)设点P(a,b)是抛物线上点C到点M之间的一个动点(含C、M点),△POQ是以PO为腰、底边OQ在x轴上的等腰三角形,过点Q作x轴的垂线交直线AM于点R,连接PR.设△PQR的面积为S,求S与a之间的函数关系式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

进入三月以来,重庆的气温渐渐升高,羽绒服进入了销售淡季.为此重庆某百货公司对某品牌的A款羽绒服进行了清仓大处理.已知A款羽绒服的销售价格y元与第x天(1≤x≤10,且为整数)之间的关系可用如下表表示:
时间(x天)12345678910
售价y(元/件)550500450400350300300300300300
在销售的前6天,A款羽绒服的销售数量z1(件)与第x天的关系式为z1=20x+40(1≤x≤6且为整数);后4天(7≤x≤10,且为整数)的销售数量z2件与第x天的关系如图所示
(1)请观察题中表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z2与x之间的一次函数关系式.
(2)若A款羽绒服的进价为每件200元,该专柜共有5个员工,每位员工每天的工资为100元,该专柜每天所需的固定支出为1000元,请结合上述信息,求这10天内哪天的利润最大,并求出这个最大利润.
(3)在第(2)问的前提下,为了提高收益、减少库存,商场在第11天作出以下决定:第11-15天继续维持A款羽绒服的售价,结果每天的销售量均与第10天的持平,同时在第11-15天将B款羽绒服也作为促销商品,而且作为销售重点,已知B款羽绒服的进价仍为200元每件,销售价格比A款羽绒服取得最大利润当天的售价降低了a%,而每天销售量则比第10天A款羽绒服的销量提高了2a%,最后5天A、B两款羽绒服的总利润为27100元,请你参考以下数据,计算出a的值.
参考数据:2.52=6.25,2.62=6.76,2.72=7.29,2.82=7.84.

查看答案和解析>>

科目: 来源:不详 题型:解答题

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为______.
(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

查看答案和解析>>

科目: 来源:不详 题型:解答题

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点o为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果身高为157.5厘米的小明站在OD之间且离点O的距离为t米,绳子甩到最高处时超过他的头顶,请结合函数图象,求出t的取值范围.

查看答案和解析>>

同步练习册答案