相关习题
 0  223884  223892  223898  223902  223908  223910  223914  223920  223922  223928  223934  223938  223940  223944  223950  223952  223958  223962  223964  223968  223970  223974  223976  223978  223979  223980  223982  223983  223984  223986  223988  223992  223994  223998  224000  224004  224010  224012  224018  224022  224024  224028  224034  224040  224042  224048  224052  224054  224060  224064  224070  224078  366461 

科目: 来源:不详 题型:单选题

如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC,可得下列结论:①∠PCB=30°;②点P的坐标是(
3
2
3
2
);③若P、C两点在抛物线y=-
4
3
x2+bx+c
上,则b的值是-
3
,c的值是1;④在③中的抛物线CP段(不包括C、P两点)上,存在一点Q,使四边形QCAP的面积最大,最大值为
9
3
16
.其中正确的有(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图1,在平面直角坐标系中,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上.现将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上(如图2),设抛物线y=ax2+bx+c(a<0),如果抛物线同时经过点O、B、C:
①当n=3时a=______;
②a关于n的关系式是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值.

查看答案和解析>>

科目: 来源:不详 题型:填空题

在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数y=x2+8x-
39
4
的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有______个.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:如图,平面直角坐标系中,四边形OABC是直角梯形,ABOC,OA=5,AB=10,OC=12,抛物线y=ax2+bx经过点B、C.
(1)求抛物线的函数表达式;
(2)一动点P从点A出发,沿AC以每秒2个单位长度的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长度的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,△PQC是直角三角形?
(3)点M在抛物线上,点N在抛物线对称轴上,是否存在这样的点M与点N,使以M、N、A、C为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,△ABC的高AD为3,BC为4,直线EFBC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.
(1)求线段AG(用x表示);
(2)求y与x的函数关系式,并求x的取值范围.

查看答案和解析>>

同步练习册答案