相关习题
 0  223890  223898  223904  223908  223914  223916  223920  223926  223928  223934  223940  223944  223946  223950  223956  223958  223964  223968  223970  223974  223976  223980  223982  223984  223985  223986  223988  223989  223990  223992  223994  223998  224000  224004  224006  224010  224016  224018  224024  224028  224030  224034  224040  224046  224048  224054  224058  224060  224066  224070  224076  224084  366461 

科目: 来源:不详 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知直线y=
1
3
x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)点C的坐标是______线段AD的长等于______;
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,点A在抛物线y=
1
4
x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-
1
8
x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,英华学校准备围成一个中间隔有一道篱笆的长方形花圃,现有长为24m的篱笆,一面靠墙(墙长为10m),设花圃宽AB为x(m),面积为S(m2).
(1)求S与x的函数关系式;
(2)如果要围成面积为45m2的花圃,AB的长是多少;
(3)能围出比45m2更大的花圃吗?若能,求出最大的面积;若不能,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-
3
4
x+3的图象与y轴、x轴的交点,点B在二次函数y=
1
8
x2+bx+c
的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,关于x的二次函数y=x2-2mx-m-2的图象与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于C点
(1)当m为何值时,AC=BC;
(2)当∠BAC=∠BCO时,求这个二次函数的表达式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列.1996---2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿.宁波市区年GDPy(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式.
(2)据调查2005年市区建设用地比2004年增加4万亩,如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?
(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ为正方形?若存在,求点P、Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案