相关习题
 0  223893  223901  223907  223911  223917  223919  223923  223929  223931  223937  223943  223947  223949  223953  223959  223961  223967  223971  223973  223977  223979  223983  223985  223987  223988  223989  223991  223992  223993  223995  223997  224001  224003  224007  224009  224013  224019  224021  224027  224031  224033  224037  224043  224049  224051  224057  224061  224063  224069  224073  224079  224087  366461 

科目: 来源:不详 题型:解答题

已知如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______;
(2)若P,A两点在抛物线y=-
4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏(虚线部分)围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形ABCD的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)你认为该方案是否合理?为什么?

查看答案和解析>>

科目: 来源:不详 题型:解答题

科学研究表明,合理安排各学科的课外学习时间,可以有效的提高学习的效率.教育专家们通过对九年级学生的课外学习时间与学习收益情况进行进一步的研究发现,九年级学生每天课外用于非数学学科的学习时间t(小时)与学习收益量y1的函数关系是图①中的一条折线;每天用于数学学科的学习时间t(小时)与学习收益量y2的函数关系如图②所示:图象中OA是顶点为A的抛物线的一部分,AB是射线.

(1)求出y1与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(2)求出y2与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(3)如果九年级学生每天课外学习的时间为2小时,学习的总收益量为W(W=y1+y2),请问应如何安排学习时间才能使学习的总收益量最大?

查看答案和解析>>

科目: 来源:不详 题型:解答题

正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.
(1)如图,当CE=
2
3
时,求线段BG的长;
(2)当点O在线段BC上时,设
CE
ED
=x
,BO=y,求y关于x的函数解析式;
(3)当CE=2ED时,求线段BO的长.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

根据条件求二次函数的解析式:
(1)抛物线过(-1,-22),(0,-8),(2,8)三点;
(2)有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如图,求抛物线的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5).
(1)求这个二次函数的解析式;
(2)该男同学把铅球推出去多远?(精确到0.01米,
15
=3.873)

查看答案和解析>>

科目: 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

抛物线y=x2+bx+c经过点(0,3)和(-1,0),那么抛物线的解析式是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,已知:抛物线y=
1
2
x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=
1
2
x-2,连接AC.
(1)B、C两点坐标分别为B(______,______)、C(______,______),抛物线的函数关系式为______;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案