相关习题
 0  223899  223907  223913  223917  223923  223925  223929  223935  223937  223943  223949  223953  223955  223959  223965  223967  223973  223977  223979  223983  223985  223989  223991  223993  223994  223995  223997  223998  223999  224001  224003  224007  224009  224013  224015  224019  224025  224027  224033  224037  224039  224043  224049  224055  224057  224063  224067  224069  224075  224079  224085  224093  366461 

科目: 来源:不详 题型:解答题

如图,直线y=
3
5
x-4分别交x、y轴于A、B两点,O为坐标原点.
(1)求B点的坐标;
(2)若D是OA中点,过A的直线l(3)把△AOB分成面积相等的两部分,并交y轴于点C.
①求过A、C、D三点的抛物线的函数解析式;
②把①中的抛物线向上平移,设平移后的抛物线与x轴的两个交点分别为M、N,试问过M、N、B三点的圆的面积是否存在最小值?若存在,求出圆的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=-
1
2
x2+
1
2
x+6与x轴交于A、B两点,与y轴相交于C点.
(1)求△ABC的面积;
(2)已知E点(0,-3),在第一象限的抛物线上取点D,连接DE,使DE被x轴平分,试判定四边形ACDE的形状,并证明你的结论.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCD满足,CDAB,且A、B在x轴上,点D(0,6),若tan∠DAO=2,AB:AO=1:1.
(1)A点坐标为(______),B点坐标为(______);
(2)求过A、B、D三点的抛物线方程;
(3)若(2)中抛物线过点C,求C点坐标;
(4)若动点P从点C出发沿C?B?x正方向,同时Q点从点A出发沿A?B?C方向(终点C)运动,且P、Q两点运动速度分别为
5
个单位/秒,1个单位/秒,若设运动时间为x秒,试探索△BPQ的形状,并说明相应x的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:
x(万元)012
y11.51.8
(1)根据上表,求y关于x的函数关系式;
(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;
(3)从上面的函数关系式中,你能得出什么结论?

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式;
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

二次函数y=-x2+kx+3的图象与x轴交于点(3,0)
(1)求函数的解析式;
(2)画出这个函数的图象.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)求点A、点B的坐标;
(2)求抛物线的解析式;
(3)设(2)中抛物线的顶点为D,求△DBC的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

将进货单价为40元的商品按50元售出时,就能卖出500个,已知这个商品每个涨价1元,其销售量就减少10个.
(1)问:为了赚得8000元的利润,售价应定为多少?这时进货多少个?
(2)当定价为多少元时,可获得最大利润?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c,其中a>0,b2-4a2c2=0,它的图象与x轴只有一个交点,交点为A,与y轴交于点B,且AB=2.
(1)求二次函数解析式;
(2)当b<0时,过A的直线y=x+m与二次函数的图象交于点C,在线段BC上依次取D、E两点,若DE2=BD2+EC2,试确定∠DAE的度数,并简述求解过程.

查看答案和解析>>

同步练习册答案