相关习题
 0  223907  223915  223921  223925  223931  223933  223937  223943  223945  223951  223957  223961  223963  223967  223973  223975  223981  223985  223987  223991  223993  223997  223999  224001  224002  224003  224005  224006  224007  224009  224011  224015  224017  224021  224023  224027  224033  224035  224041  224045  224047  224051  224057  224063  224065  224071  224075  224077  224083  224087  224093  224101  366461 

科目: 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象与x轴交于点A(1,0)和点B(点B在点A右侧),与y轴交于点C(0,2).
(1)请说明a、b、c的乘积是正数还是负数;
(2)若∠OCA=∠CBO,求这个二次函数的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,二次函数y=x2+2mx+m2-4的图象与x轴的负半轴相交于A、B两点(点A在左侧),一次函数y=2x+b的图象经过点B,与y轴相交于点C.
(1)求A、B两点的坐标(可用m的代数式表示);
(2)如果?ABCD的顶点D在上述二次函数的图象上,求m的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知平面直角坐标系xOy,一次函数y=
3
4
x+3
的图象与y轴交于点A,点M在正比例函数y=
3
2
x的
图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A,M.求这个二次函数的解析式.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知抛物线的顶点是(-1,-2),且过点(1,10).求此抛物线对应的二次函数关系式______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在直角坐标系xOy中,二次函数y=
1
2
x2+
3
4
nx+2-m
的图象与x轴交于A、B两点,与y轴交于点C,其中点A在点B的左边,若
∠ACB=90°,
CO
AO
+
BO
CO
=1

(1)求点C的坐标及这个二次函数的解析式.
(2)试设计两种方案:作一条与y轴不重合、与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的四分之一.求所截得的三角形三个顶点的坐标(说明:不要求证明).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,△OAB是边长为4+2
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PEx轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
1
2
x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.
(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知点A(-2,0),点B在x轴的正半轴上,点M在y轴的负半轴上,且|AB|=6,cos∠OBM=
5
5
,点C是M关于x轴的对称点.
(1)求过A、B、C三点的抛物线的函数表达式及其顶点D的坐标;
(2)设直线CD交x轴于点E,在线段OB的垂直平分线上求一点P,使点P到直线CD的距离等于点P到原点的O距离;
(3)在直线CD上方(1)中的抛物线(不包括C、D)上是否存在点N,使四边形NCOD的面积最大?若存在,求出点N的坐标及该四边形面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO.
(1)求出B点坐标和这个二次函数的解析式;
(2)求出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

同步练习册答案