相关习题
 0  223910  223918  223924  223928  223934  223936  223940  223946  223948  223954  223960  223964  223966  223970  223976  223978  223984  223988  223990  223994  223996  224000  224002  224004  224005  224006  224008  224009  224010  224012  224014  224018  224020  224024  224026  224030  224036  224038  224044  224048  224050  224054  224060  224066  224068  224074  224078  224080  224086  224090  224096  224104  366461 

科目: 来源:不详 题型:解答题

已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2

(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象的形状与抛物线y=-
1
2
x2+1的形状相同,且经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.
(1)求OE的长;
(2)求过O,D,C三点抛物线的解析式;
(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分.

查看答案和解析>>

科目: 来源:不详 题型:解答题

养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.
(1)当AB为何值时,所围的面积是132
3
m2

(2)当AB为何值时,所围的面积最大?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知直线y=3x-3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

用长为24米的篱笆,一面利用10米的墙,围成一个中间隔有一道篱笆的长方形花园.设花园的宽AB为x米,面积为y米2
(1)求y与x之间的函数关系式
(2)当宽AB为多少是,围成面积最大?

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,矩形ABCD的长AB=5cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是______cm2

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,⊙C经过原点且与两坐标分别交于点A与点B,点A的坐标为(0,6),点M是圆上弧BO的中点,且∠BMO=120°.
①求弧BO的度数;
②求⊙C的半径;
③求过点B、M、O的二次函数解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某汽车制造公司计划生产A、B、C三种型号的汽车共80辆.并且公司在设计上要求,A、C两种型号之间按如图所示的函数关系生产.该公司投入资金不少于1212万元,但不超过1224万元,且所有资金全部用于生产这三种型号的汽车,三种型号的汽车生产成本和售价如下表:
ABC
成本(万元/辆)121518
售价(万元/辆)141822
设A种型号的汽车生产x辆;
(1)设C种型号的汽车生产y辆,求出y与x的函数关系式;
(2)该公司对这三种型号汽车有哪几种生产方案?
(3)设该公司卖车获得的利润W万元,求公司如何生产获得利润最大?
(4)根据市场调查,每辆A、B型号汽车的售价不会改变,每辆C型号汽车在不亏本的情况下售价将会降价a万元(a>0),且所生产的三种型号汽车可全部售出,该公司又将如何生产获得利润最大?(注:利润=售价-成本)

查看答案和解析>>

同步练习册答案