相关习题
 0  223915  223923  223929  223933  223939  223941  223945  223951  223953  223959  223965  223969  223971  223975  223981  223983  223989  223993  223995  223999  224001  224005  224007  224009  224010  224011  224013  224014  224015  224017  224019  224023  224025  224029  224031  224035  224041  224043  224049  224053  224055  224059  224065  224071  224073  224079  224083  224085  224091  224095  224101  224109  366461 

科目: 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y1=2x2+
1
4
的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+
1
4
和直线y2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c的图象经过(1,0)和(0,3)两点,它的部分图象如下图.
(1)求b、c的值;
(2)写出当y>0时,x的取值范围;
(3)求y的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:填空题

把一根长100cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是______cm2

查看答案和解析>>

科目: 来源:不详 题型:解答题

崇启大桥使启东市融入了上海一小时经济区,为启东经济的腾飞打下了坚实的基础,建成的大桥将是世界上最长的斜拉索大桥,如图,桥梁的两条钢缆具有相同的抛物线形状,建立如图所示的直角坐标系,左边的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称.
(1)钢缆最低点到桥面的距离是多少?
(2)两条钢缆的最低点之间的距离是多少?
(3)写出右边钢缆的抛物线的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx经过B(8、0),C(6、2
3
)两点,点A是点C关于抛物线y=ax2+bx的对称轴的对称点,连接OA、AC、BC

(1)求抛物线的解析式.
(2)动点E从点O出发,速度为3个单位/秒,沿O→A→C匀速运动:动点F从点O出发,速度为4个单位/秒,沿O→B匀速运动,动点E、F同时出发,若设运动时间为t秒(0≤t≤2),△OEF的面积为S,请求出运动过程中S与t的关系式.
(3)设P是抛物线对称轴上的一点,是否存在点P使以O、E、F、P为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,直接写出点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=-x2+bx+c与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程x2-6x+5=0的两个实数根.
(1)求A、B两点的坐标;
(2)求出此抛物线的解析式及顶点D的坐标;
(3)求出此抛物线与x轴的另一个交点C的坐标;
(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线的顶点坐标是(
5
2
,-
9
8
)
,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B(A在B的右边),直线y=(m+1)x-3经过点A.若m<1.
(1)求抛物线和直线的解析式;
(2)直线y=kx(k<0)交直线y=(m+1)x-3于点P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M点作x轴垂线,垂足为D,交直线y=(m+1)x-3于点N.问:△PMN能否为等腰三角形?若能,求k的值;若不能,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

查看答案和解析>>

同步练习册答案