相关习题
 0  223942  223950  223956  223960  223966  223968  223972  223978  223980  223986  223992  223996  223998  224002  224008  224010  224016  224020  224022  224026  224028  224032  224034  224036  224037  224038  224040  224041  224042  224044  224046  224050  224052  224056  224058  224062  224068  224070  224076  224080  224082  224086  224092  224098  224100  224106  224110  224112  224118  224122  224128  224136  366461 

科目: 来源:不详 题型:单选题

如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为(  )
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知如图,过O且半径为5的⊙P交x的正半轴于点M(2m,0)、交y轴的负半轴于点D,弧OBM与弧OAM关于x轴对称,其中A、B、C是过点P且垂直于x轴的直线与两弧及圆的交点.
(1)当m=4时,
①填空:B的坐标为______,C的坐标为______,D的坐标为______;
②若以B为顶点且过D的抛物线交⊙P于点E,求此抛物线的函数关系式和写出点E的坐标;
③除D点外,直线AD与②中的抛物线有无其它公共点并说明理由.
(2)是否存在实数m,使得以B、C、D、E为顶点的四边形组成菱形?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知直线y=x与抛物线y=
1
2
x2
交于A、B两点.
(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=
1
2
x2
的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且OB=
1
2
BC,过A,C两点的抛物线交直线AB于点D,且CDx轴.
(1)求这条抛物线的解析式;
(2)直接写出使一次函数值小于二次函数值时x的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知直线y=kx+2经过点P(1,
5
2
),与x轴相交于点A;抛物线y=ax2+bx(a>0)经过点A和点P,顶点为M.
(1)求直线y=kx+2的表达式;
(2)求抛物线y=ax2+bx的表达式;
(3)设此直线与y轴相交于点B,直线BM与x轴相交于点C,点D的坐标为(
8
3
,0),试判断△ACB与△ABD是否相似,并说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,一次函数y=-2x+t(t>0)的图象与x轴,y轴分别交于点C,D.
(1)求点C,点D的坐标;
(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,若以点C,点D为直角顶点的△PCD与△OCD相似.求t的值及对应的点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,B是长度为1的线段AE上任意一点,在AE的同一侧分别作正方形ABCD和长方形BEFG,且EF=2BE.

(1)点B在何处时,正方形ABCD的面积与长方形BEFG的面积和最小,最小值为多少?
(2)若点C与点G重合,M为AB中点,N为EF中点,MN与BC交于点H(如图2所示),将△OMA沿直线DM,△MNE沿直线MN分别向矩形AEFD内折叠,求四边形DMNF未被两个折叠三角形覆盖的图形面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1.
(1)求二次函数的解析式和直线DC的函数关系式;
(2)求△ABC的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC的面积等于14时,求t的值.
(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)

查看答案和解析>>

科目: 来源:不详 题型:解答题

某校课外活动小组准备利用学校的一面墙,用长为30米的篱笆围成一个矩形生物苗圃园.
(1)若墙长为18米(如图所示),当垂直于墙的一边的长为多少米时,这个苗圃园的面积等于88平方米?
(2)当垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.

查看答案和解析>>

同步练习册答案