相关习题
 0  223947  223955  223961  223965  223971  223973  223977  223983  223985  223991  223997  224001  224003  224007  224013  224015  224021  224025  224027  224031  224033  224037  224039  224041  224042  224043  224045  224046  224047  224049  224051  224055  224057  224061  224063  224067  224073  224075  224081  224085  224087  224091  224097  224103  224105  224111  224115  224117  224123  224127  224133  224141  366461 

科目: 来源:不详 题型:解答题

如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作∠OEF=45°,射线ET交线段OB于点F.
(1)求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:∠BEF=∠COE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某海参养殖公司经市场调研发现,每周该公司销售的海参量y(千克)与单价x(元/千克)之间存在如图所示的一次函数关系.
(1)根据图象求y与x之间的函数表达式;
(2)从经济效益来看,你认为该公司如何制定海参单价,能使每周海参的销售收入最高?每周海参的最高销售收入是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,BC与抛物线的对称轴交于点E.
(1)求点B、点C的坐标和抛物线的对称轴;
(2)求直线BC的函数关系式;
(3)点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F.设点P的横坐标为m;用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
5
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
1
4
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210平方米?说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.
(1)当x=______时,代数式-2(x-1)2+3有最______(填写大或小)值为______.
(2)当x=______时,代数式-2x2+4x+3有最______(填写大或小)值为______.
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图所示,桥拱是抛物线形,其函数解析式是y=-
1
4
x2,当水位线在AB位置时,水面宽为12米,这时水面离桥顶的高度h是______米.

查看答案和解析>>

同步练习册答案