相关习题
 0  223956  223964  223970  223974  223980  223982  223986  223992  223994  224000  224006  224010  224012  224016  224022  224024  224030  224034  224036  224040  224042  224046  224048  224050  224051  224052  224054  224055  224056  224058  224060  224064  224066  224070  224072  224076  224082  224084  224090  224094  224096  224100  224106  224112  224114  224120  224124  224126  224132  224136  224142  224150  366461 

科目: 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C.
(1)求抛物线的顶点M的坐标;(用a的代数式表示)
(2)直线y=x+d经过C、M两点,并且与x轴交于点D.
①求抛物线的函数表达式;
②若四边形CDAN是平行四边形,且点N在抛物线上,则点N的坐标为(______,______);
③设点P是抛物线对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,抛物线y=x2-2x与直线y=3相交于点A、B,P是x轴上一点,若PA+PB最小,则点P的坐标为(  )
A.(-l,0)B.(0,0)C.(1,0)D.(3,0)

查看答案和解析>>

科目: 来源:不详 题型:解答题

在直角△ABC中,∠C=90°,直角边BC与直角坐标系中的x轴重合,其内切圆的圆心坐标为P(0,1),若抛物线y=kx2+2kx+1的顶点为A.求:
(1)求抛物线的对称轴、顶点坐标和开口方向;
(2)用k表示B点的坐标;
(3)当k取何值时,∠ABC=60°?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:O为坐标原点,∠AOB=30°,∠ABO=90°且A(2,0).求:过A、B、O三点的二次函数解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)求A点坐标并求抛物线的解析式;
(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(1,0),B(-3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连接AC.
(1)求此抛物线的解析式;
(2)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP?若存在,求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式;
(2)若商场要想每天获得最大销售利润,每件商品的售价定为什么最合适?最大销售利润是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,二次函数y1=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.
(1)求二次函数的解析式;
(2)求二次函数的图象与x轴的另一个交点A的坐标;
(3)根据图象写出y2<y1时,x的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>0).
(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);
(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;
(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;
(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案