相关习题
 0  225726  225734  225740  225744  225750  225752  225756  225762  225764  225770  225776  225780  225782  225786  225792  225794  225800  225804  225806  225810  225812  225816  225818  225820  225821  225822  225824  225825  225826  225828  225830  225834  225836  225840  225842  225846  225852  225854  225860  225864  225866  225870  225876  225882  225884  225890  225894  225896  225902  225906  225912  225920  366461 

科目: 来源:不详 题型:解答题

边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到BC边时,小球P所经过的路程为       ;当小球P第一次碰到AD边时,小球P所经过的路程为       ;当小球P第n(n为正整数)次碰到点F时,小球P所经过的路程为         

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平行四边形ABCD中,E为BC边上的一点,连接AE、BD交于点F,AE=AB.
(1)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
(2)若AB=10,BE=2EC,求EF的长.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,在等边△ABC中,点D、E分别是边AB、AC的中 点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是
A.矩形         B.菱形        C.正方形         D.梯形

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,梯形ABCD中,AD∥BC,AB=3,BC=4,连结BD,∠BAD的平分线交BD于 点E,且AE∥CD,则AD的长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:四边形ABCD是矩形.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.

查看答案和解析>>

科目: 来源:不详 题型:单选题

用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是 ( )
A.一组邻边相等的四边形是菱形
B.四边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.每条对角线平分一组对角的平行四边形是菱形

查看答案和解析>>

科目: 来源:不详 题型:解答题

小明遇到这样一个问题:“如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.”
分析时,小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于 点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)
请回答:
(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为_______
(2)求正方形MNPQ的面积.
(3)参考小明思 考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为_______.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称。若E点的坐标是(7,-3),则D点的坐标是                     

查看答案和解析>>

同步练习册答案