相关习题
 0  226287  226295  226301  226305  226311  226313  226317  226323  226325  226331  226337  226341  226343  226347  226353  226355  226361  226365  226367  226371  226373  226377  226379  226381  226382  226383  226385  226386  226387  226389  226391  226395  226397  226401  226403  226407  226413  226415  226421  226425  226427  226431  226437  226443  226445  226451  226455  226457  226463  226467  226473  226481  366461 

科目: 来源:不详 题型:解答题

如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC以O为旋转中心,将△A1B1C1逆时针旋转90°得△A1B1C1,画出旋转后的图形,并写出B1点坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知,DE是等腰直角三角形ABC的中位线,将△BED沿AB翻折使E落在F处,如图①,再将△ABC绕B点逆时针旋转α°(0<α<90°),连接AF,DC,如图②.
(1)观察猜想,∠AFB与∠BDC大小关系______(直接出正确结论);
(2)当α=30时,试判断△BDC的形状;
(3)在(2)的条件下,若DG=1,求DF的长.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在正方形网格中,建立如图所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C,并写出点A2,B2的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:直角△ABC中,∠ACB=90°,AC=4,BC=2.
(1)如图①,将直角△ABC按顺时针方向绕点C旋转到△A1B1C位置,试求出点A所经过路径的长度(精确到0.1);
(2)如图②,将图①中△A1B1C向左平移到△A2B2C1位置,若点B2落在AB上,试求出平移的距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,网格中每个小正方形的边长为1.请你认真观察图中的三个网格中阴影部分构成的图案.解答下列问题:
(1)这三个图案都具有以下共同特征:
①都是______对称图形;②阴影部分面积都是______;③都不是______对称图形.
(2)请你在备用图中设计出一个具备上述特征的图案(图中已给出除外)

查看答案和解析>>

科目: 来源:不详 题型:解答题

请阅读下列材料?:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为
7
.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知四边形ABCD各顶点坐标分别是(5,0),(-2,3),(-1,0),(-1,-5),作出四边形ABCD关于原点对称的图形.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.
活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积.

小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:______.
活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长.

小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:______.AE的长是______.
活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.

(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,共有7个全等的三角形,你能分析说明第1个三角形经过什么变化可以依次得到其余6个三角形吗?

查看答案和解析>>

同步练习册答案