相关习题
 0  227801  227809  227815  227819  227825  227827  227831  227837  227839  227845  227851  227855  227857  227861  227867  227869  227875  227879  227881  227885  227887  227891  227893  227895  227896  227897  227899  227900  227901  227903  227905  227909  227911  227915  227917  227921  227927  227929  227935  227939  227941  227945  227951  227957  227959  227965  227969  227971  227977  227981  227987  227995  366461 

科目: 来源:不详 题型:单选题

(2011•潼南县)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为(  )
A.2:1B.1:2
C.4:1D.1:4

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,设抛物线C1:, C2:,C1与C2的交点为A,
B,点A的坐标是,点B的横坐标是-2.
(1)求的值及点B的坐标; 
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 过C2顶点M的直线记为,且与x轴交于点N.
①若过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;
②若与△DHG的边DG相交,求点N的横坐标的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在中,是角平分线,平分
,经过两点的于点,交于点恰为的直径.

(1)求证:相切;
(2)当时,求的半径.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一
点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动
时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.
(1)当x=   ▲ s时,DE⊥AB;
(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;
(3)当△BEF为等腰三角形时,求x的值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,利用标杆BE测量建筑物DC的高度,如果标杆BE长为1.5米,测得
AB=2米, BC=10米,且点A、E、D在一条直线上,则楼高CD是(▲)

A.8米         B.7.5米       C.9米           D.9.5米

查看答案和解析>>

科目: 来源:不详 题型:解答题

(12分)如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B
重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形
相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,
我们就把点E叫做四边形ABCD的AB边上的强相似点.

(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;
(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)
②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(8分) 甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图(2),测得学校旗杆的影长为900cm.
丙组:如图(3),测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ
为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm。
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)请根据甲、丙两组得到的信息,求:
灯罩底面半径MK的长;
②灯罩的主视图面积。

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,由已知条件得x=               

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题满分9分)如图,边长为4的正方形OABC的顶点O为坐标原点,点A
在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),
连接OD,过点D作DE⊥OD,交边AB于点E,连接OE。
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这
个最大值及此时t的值;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:不详 题型:解答题

(本题满分7分)如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有
一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.

查看答案和解析>>

同步练习册答案