已知:在△ABC中,∠C=90°,BC=AC.
(1)如图(1),若点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.求证:△OMN是等腰直角三角形;
(2)将图(1)中△CDE绕着点C顺时针旋转90°如图(2),O、M、N分别为AB、AD、BE中点,则(1)中的结论是否成立,并说明理由;
(3)如图(3),若BC=AC=4,CD=CE=2,将图(1)中△CDE绕着点C顺时针旋转,记旋转角为α(0°<a<360°),O、M、N分别为AB、AD、BE中点,求在整个旋转过程中线段MN的最大值,并写出此时a的度数.
