相关习题
 0  257125  257133  257139  257143  257149  257151  257155  257161  257163  257169  257175  257179  257181  257185  257191  257193  257199  257203  257205  257209  257211  257215  257217  257219  257220  257221  257223  257224  257225  257227  257229  257233  257235  257239  257241  257245  257251  257253  257259  257263  257265  257269  257275  257281  257283  257289  257293  257295  257301  257305  257311  257319  366461 

科目: 来源: 题型:

一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.

查看答案和解析>>

科目: 来源: 题型:

某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型B型
价格(万元/台)1210
月污水处理能力(吨/月)200160
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.

查看答案和解析>>

科目: 来源: 题型:

课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目: 来源: 题型:

如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(8,0),C(0,3),M是OA的中点,动点P从点C出发,沿着在CB以2个单位长度/秒的速度匀速向点B运动,达到点B后停止,连接OP,PM.
(1)点P的坐标为
 
;(用含有r的代数式表示)
(2)求当t为何值时,△OPM是以PM为腰的等腰三角形?
(3)如图2,以PC为直径作⊙D,连接BM,试求t为何值时,⊙D与BM相切?并直接写出⊙D与线段BM有两个交点时,t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

如图,已知直线l的解析式为y=
1
2
x-1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,
5
4
)三点.
(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;
(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;
(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.

查看答案和解析>>

科目: 来源: 题型:

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象与x轴的正半轴交于A(x1,0)、B(x2,0)两点(点A在点B的左侧),与y轴交于点C.点A和点B间的距离为2,若将二次函数y=ax2+bx+c的图象沿y轴向上平移3个单位时,则它恰好过原点,且与x轴两交点间的距离为4.
(1)求二次函数y=ax2+bx+c的表达式;
(2)在二次函数y=ax2+bx+c的图象的对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由;
(3)设二次函数y=ax2+bx+c的图象的顶点为D,在x轴上是否存在这样的点F,使得∠DFB=∠DCB?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,把边长为a=2的正方形剪成四个全等的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形(要求全部用上,互不重叠,互不留隙).
(1)矩形(非正方形);
(2)菱形(非正方形);
(3)四边形(非平行四边形).

查看答案和解析>>

科目: 来源: 题型:

如图1,在一个不透明的袋中装有四个球,分别标有字母A、B、C、D,这些球除了所标字母外都相同,另外,有一面白色、另一面黑色、大小相同的4张正方形卡片,每张卡片上面的字母相同,分别标有A、B、C、D.最初,摆成图2的样子,A、D是黑色,B、C是白色.
  操作:①从袋中任意取一个球;
       ②将与取出球所标字母相同的卡片翻过来;
       ③将取出的球放回袋中
再次操作后,观察卡片的颜色.
(如:第一次取出球A,第二次取出球B,此时卡片的颜色变
(1)求四张卡片变成相同颜色的概率;
(2)求四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率.

查看答案和解析>>

科目: 来源: 题型:

如图:抛物线y=-x2+bx+c交x轴于A、B,直线y=x+2过点A,交y轴于C,交抛物线于D,且D的纵坐标为5.
(1)求抛物线解析式;
(2)点P为抛物线第一象限的图象上的一点,直线PC交x轴于点E,若PC=3CE,求点P的坐标;
(3)在(2)的条件下,点Q为x轴上一点,把△PCQ沿CQ翻折,点P刚好落在x轴上点G处,求Q点的坐标.

查看答案和解析>>

科目: 来源: 题型:

某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

同步练习册答案