相关习题
 0  257485  257493  257499  257503  257509  257511  257515  257521  257523  257529  257535  257539  257541  257545  257551  257553  257559  257563  257565  257569  257571  257575  257577  257579  257580  257581  257583  257584  257585  257587  257589  257593  257595  257599  257601  257605  257611  257613  257619  257623  257625  257629  257635  257641  257643  257649  257653  257655  257661  257665  257671  257679  366461 

科目: 来源: 题型:

如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值是
 

查看答案和解析>>

科目: 来源: 题型:

今年“五一”黄金周,我省实现社会消费的零售总额约为94亿元.若用科学记数法表示,则94亿可写为
 
元.

查看答案和解析>>

科目: 来源: 题型:

如图,⊙O是以原点为圆心,
2
为半径的圆,点P是直线y=-x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为
 

查看答案和解析>>

科目: 来源: 题型:

如图,一张矩形纸片ABCD,其中AB=2,BC=3,将该纸片沿对角线BD折叠,则阴影部分的面积为
 

查看答案和解析>>

科目: 来源: 题型:

如图,已知AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于点D.
(1)证明:直线PB是⊙O的切线;
(2)若BD=2PA,OA=3,PA=4,求BC的长.

查看答案和解析>>

科目: 来源: 题型:

我市某海域内有一艘渔船发主障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障船会合后立即将其拖回,如图,折线段O-A-B表示救援船在整个过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律,抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律,已知救援船返程速度是前往速度的
2
3
.根据图象提供的信息,解答下列问题:
(1)求救援船的前往速度;
(2)若该故障渔船在发出救援信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证渔船的安全.

查看答案和解析>>

科目: 来源: 题型:

有两部不同型号的手机(分别记为A,B)和与之匹配的2个保护盖(分别记为a,b)(如图所示)散乱地放在桌子上.
(1)若从手机中随机取一部,再从保护盖中随机取一个,求恰好匹配的概率.
(2)若从手机和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.

查看答案和解析>>

科目: 来源: 题型:

“一个书香充盈的城市才是美丽的城市!”随着北仑区图书馆新馆的开放,人们的日常生活中掀起了全民阅读热潮.小明和同学以“我最喜爱的书籍”为主题,对人们最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据统计图提供的信息,解答下列问题:
(1)计算一共调查了多少人?并将该条形统计图补充完整;
(2)求出扇形统计图中,科普类所对应的圆心角的度数;
(3)若全区约有63万人,试估计最喜爱文学类书籍的人数.
(4)据了解,图书馆现有藏书60万册,为了能够满足广大读者的热切需求,计划两年后图书藏书量增加到86.4万册,假设这两年的年增长率相同,求平均年增长率是多少?

查看答案和解析>>

科目: 来源: 题型:

如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=7,AD=4,CA=5,动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C→D→A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD交于点E,与折线A-C-B的交点为Q,设点M的运动时间为t.
(1)当点P在线段CD上时,CE=
 
,CQ=
 
;(用含t的代数式表示)
(2)在(1)的条件下,如果以C、P、Q为顶点的三角形为等腰三角形,求t的值;
(3)当点P运动到线段AD上时,PQ与AC交于点G,若S△PCG:S△CQG=1:3,求t的值.

查看答案和解析>>

科目: 来源: 题型:

阅读下面的材料:
(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=
a
c
,sinB=
b
c
是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC=
c
c
=1.
由sinA=
a
c
,可得c=
a
sinA
;由sinB=
b
c
,可得c=
b
sinB

而c=
c
1
=
c
sin90°
=
c
sinC
,于是就有
a
sinA
=
b
sinB
=
c
sinC

(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.
证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=
AD
c

∴AD=c•sinB,∴S△ABC=
1
2
a•AD=
1
2
ac•sinB,
在Rt△ACD中,sinC=
AD
b
,∴AD=b•sinC.
∴S△ABC=
1
2
a•AD=
1
2
ab•sinC.同理可得S△ABC=
1
2
bc•sinA.
因此有S△ABC=
1
2
ac•sinB=
1
2
ab•sinC=
1
2
bc•sinA.
也就是=ac•sinB=ab•sinC=bc•sinA.
每项都除以abc,得
sinB
b
=
sinC
c
=
sinA
a
,故
a
sinA
=
b
sinB
=
c
sinC

请你根据对上面材料的理解,解答下列问题:
(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;
(2)求问题(1)中△ABC的面积;
(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)

查看答案和解析>>

同步练习册答案